

Data-Driven Identification of Stable Non-Linear Systems Using Long Short-Term Memory^[1]

Research Seminar
Computer & Systems Engineering (M.Sc.)

Student:
Jakob Lerch

Supervisor:
Irene Schimperna

Responsible Professors:
Prof. Dr.-Ing. Patrick Mäder, Prof. Dr. Karl Worthmann

1. E. Terzi, F. Bonassi, M. Farina, and R. Scattolini, “Learning model predictive control with long short-term memory networks,” International Journal of Robust and Nonlinear Control, Apr. 2021, doi: <https://doi.org/10.1002/rnc.5519>. ↵

Motivation

Given is a **non-linear, time-invariant** system Σ with

$$\tilde{x}^+ = f(\tilde{x}, u)$$

$$\tilde{y} = h(\tilde{x})$$

which is **stable** and where $u \in [u_{min}, u_{max}]$.

Find a model for it using **only data of input u and output \tilde{y}** .

Motivation

Given is a **non-linear, time-invariant** system Σ with

$$\begin{aligned}\tilde{x}^+ &= f(\tilde{x}, u) \\ \tilde{y} &= h(\tilde{x})\end{aligned}$$

which is **ISS/δISS** and where $u \in [u_{min}, u_{max}]$.

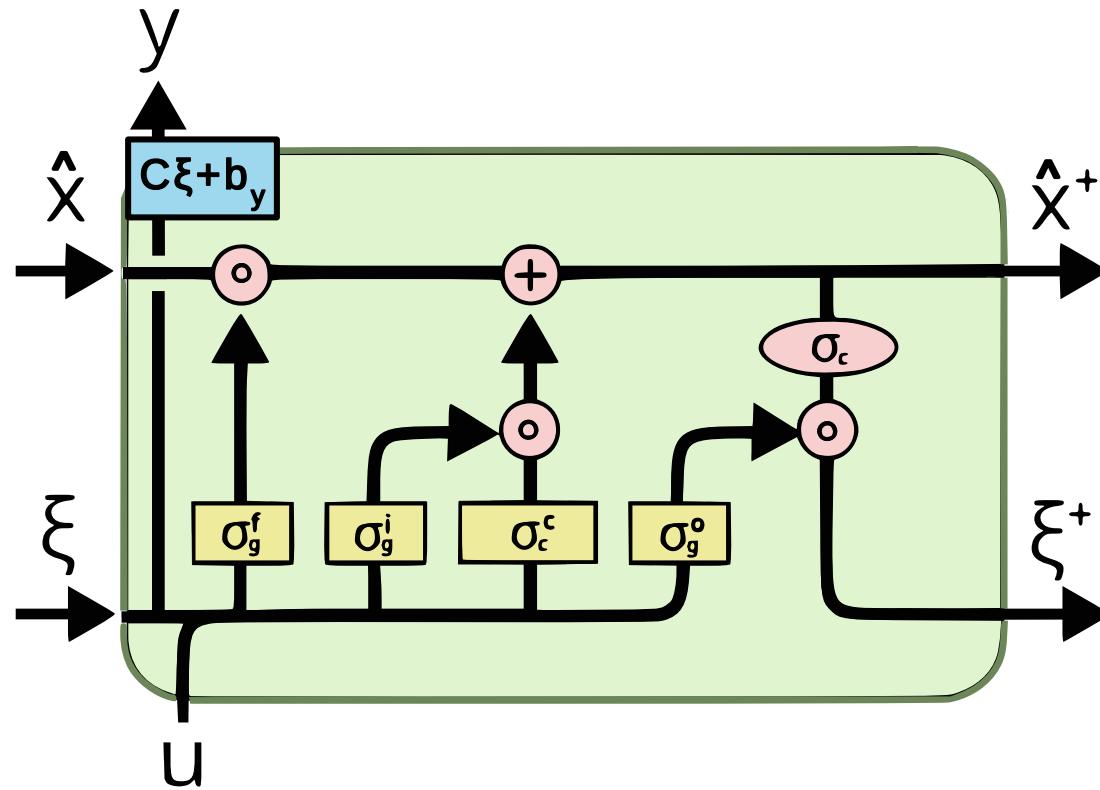
Find a model for it using **only data of input u and output \tilde{y}** .

Comparison functions^[1]:

$$\begin{aligned}\mathcal{K} &:= \{\alpha : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \mid \alpha \text{ cont., str. inc., } \alpha(0) = 0\} \\ \mathcal{K}_\infty &:= \{\alpha : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \mid \alpha \in \mathcal{K}, \alpha \text{ unbounded}\} \\ \mathcal{KL} &:= \{\beta : \mathbb{R}^+ \times \mathbb{N}_0 \rightarrow \mathbb{R}^+ \mid \beta \text{ cont., } \beta(\cdot, k) \in \mathcal{K}, \\ &\quad \beta(s, \cdot) \text{ str. dec., } \lim_{t \rightarrow \infty} \beta(s, k) = 0\}\end{aligned}$$

1. Lars Grüne and Jürgen Pannek, Nonlinear model predictive control : theory and algorithms. Switzerland: Springer, 2017. ↵

Long Short-Term Memory (LSTM)^{[1][2]}



1. H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent neural network architectures for large scale acoustic modeling,” Interspeech 2014, Sep. 2014, doi: <https://doi.org/10.21437/interspeech.2014-80>. ↵
2. C. Olah, “Understanding LSTM Networks.” Colah’s Blog. <https://colah.github.io/posts/2015-08-Understanding-LSTMs/> (accessed Feb. 02, 2025). ↵

Stability of LSTM

We require the LSTM to be ISS/ δ ISS. Reasons:

1. Σ is ISS/ δ ISS.
2. Eventually,
 - (ISS) $x(k)$ gets near 0.
 - (δ ISS) $x_1(k), x_2(k)$ get near to each other.
3. Safety guarantees.

→ **How to guarantee ISS/ δ ISS for LSTM formally?**

Stability of LSTM

Theorem 1. *The LSTM network is ISS with respect to the input u and bias b_c if A is Schur, where*

$$A = \begin{bmatrix} \bar{\sigma}_g^f & \bar{\sigma}_g^i \|U_c\| \\ \bar{\sigma}_g^o \bar{\sigma}_g^f & \bar{\sigma}_g^o \bar{\sigma}_g^i \|U_c\| \end{bmatrix}.$$

Proposition 1. *A is Schur if and only if the following inequation holds:*

$$\bar{\sigma}_g^f + \bar{\sigma}_g^o \bar{\sigma}_g^i \|U_c\| < 1.$$

Stability of LSTM

Theorem 1. *The LSTM network is ISS with respect to the input u and bias b_c if A is Schur, where*

$$A = \begin{bmatrix} \bar{\sigma}_g^f & \bar{\sigma}_g^i \|U_c\| \\ \bar{\sigma}_g^o \bar{\sigma}_g^f & \bar{\sigma}_g^o \bar{\sigma}_g^i \|U_c\| \end{bmatrix}.$$

Proposition 1. *A is Schur if and only if the following inequation holds:*

$$\bar{\sigma}_g^f + \bar{\sigma}_g^o \bar{\sigma}_g^i \|U_c\| < 1.$$

Lemma 1. *Given a 2×2 real matrix A , it is Schur if and only if*

$$-1 - a < b < 1,$$

where $a = -A_{11} - A_{22}$ and $b = A_{11}A_{22} - A_{12}A_{21}$.

Stability of LSTM

Theorem 2. *The LSTM network is δ ISS with respect to the inputs u_1 and u_2 if A_δ is Schur, where*

$$A_\delta = \begin{bmatrix} \bar{\sigma}_g^f & \alpha \\ \bar{\sigma}_g^o \bar{\sigma}_g^f & \alpha \bar{\sigma}_g^o + \frac{1}{4} \bar{\sigma}_c^x ||U_o|| \end{bmatrix}$$

with

$$\alpha = \frac{1}{4} ||U_f|| \frac{\bar{\sigma}_g^i \bar{\sigma}_c^c}{1 - \bar{\sigma}_g^f} + \bar{\sigma}_g^i ||U_c|| + \frac{1}{4} ||U_i|| \bar{\sigma}_c^c.$$

Proposition 2. A_δ is Schur if the following inequation hold:

$$-1 + \bar{\sigma}_g^f + \alpha \bar{\sigma}_g^o + \frac{1}{4} \bar{\sigma}_c^x ||U_o|| < \frac{1}{4} \bar{\sigma}_g^f \bar{\sigma}_c^x ||U_o|| < 1.$$

How to Find Parameters Ensuring ISS?

Formulate the **equations** from Prop. 1 as $r < 0$.

Extend the loss function to **force residual** $r < 0^{[1]}$.

1. The shown loss function aims to fullfilling the inequations from Proposition 1 to enforce just ISS. For enforcing δ ISS, one needs to consider the inequations from Proposition 2, instead. The procedure, however, is the same. [←](#)

Conclusion

- An **LSTM** network can be used to **model non-linear systems**.
- For this, **ISS/δISS is a desirable property** for the LSTM network.
- ISS and δ ISS of an LSTM network **can be shown formally**.
- ISS and δ ISS **can be enforced during optimization**.