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Abstract

This report addresses the topic of data-driven system identification. Its focus lies on how
to identify a stable non-linear system using a long short-term memory (LSTM) network and
how to analyze the retrieved model’s stability properties in terms of input-to-state stability
(ISS) and incremental input-to-state stability (6ISS). Considering upper boundaries of the
LSTM network’s state, sufficient conditions for its ISS and 0ISS are derived. A method to
enforce the model to be ISS and §ISS during the identification procedure is shown. The
results enable for guarantees regarding stability and boundedness and can be applied to
controller design, e.g. with model predictive control. Future work could be to investigate
similar methods for unstable non-linear systems.

1 Introduction

In Systems Engineering, a fundamental task is to retrieve a mathematical model from a system
under consideration (which here is synonymous to plant). This act is referred to as model
retrieval or system identification. Such a model can then be used for simulation and prediction
of the system behavior, e.g. as a component in a control algorithm [1].

There are knowledge-based and data-driven approaches for model retrieval. Knowledge-
based approaches model the process from domain knowledge, about the internal dynamics of
the system [2]. What limits this approach is lack of understanding of the considered system’s
behavior as well as possibly missing information about relevant parameters. Data-driven ap-
proaches retrieve a model only from available data from the plant, such as corresponding in-
and output time series [2]. Availability of large process data sets and the high popularity of



data-driven system identification in practice motivate investigating data-driven methods [3].
Methods that combine knowledge-based and data-driven techniques are referred to as grey-box
approaches [4]. Thereby, a general model structure is imposed justified by domain knowledge,
but several components of that model are tuned using available process data.

In data-driven system identification, the model to be fitted is a parameterization of a system’s
state and output equations. Finding parameters for the model to resemble the plant can be seen
as a regression problem [2] where its parameters are fit to minimize a distance metric between
the considered system and the model. This metric can be the mean squared error between
the plant’s and the model’s output given the same input series, or the prediction error, which
takes into account the model’s capability of predicting future time steps given corresponding
input data, but only the present time step’s state [2]. If the considered system is assumed to be
linear, the class of considered models for identification are different variants of parameterizing
linear discrete state equations, such as the Box-Jenkins model or the auto-regressive model
exogenous (ARX) model [2].

In the case of non-linear systems, considered model classes include e.g. the non-linear ARX
(NARX) model. The NARX model is a linear combination of non-linear basis functions where
parameters like the linear factors and argument offsets of basis functions are fitted |2]. Another
model class is that of recurrent neural networks (RNNs). Their high representational power
and wide applicability [4] motivates their investigation. In [4] various and in general well-known
RNN architectures are proposed for the use of non-linear system identification, including neural
nonlinear ARX (NNARX), echo state networks (ESN), and gated RNNs, namely long short-
term memory (LSTM) networks and gated recurrent units (GRUs). Our interest is in LSTM
networks in particular.

Following [4] one important question concerning RNNs for the use in control systems is that
of robustness and stability. In [3] this topic is addressed and sufficient conditions for input-to-
state stability (ISS) and incremental input-to-state stability 0ISS of LSTM networks as well as
a method to integrate those conditions in the network’s optimization procedure are proposed.

An application of RNN-models where stability can be guaranteed is their use in model pre-
dictive control (MPC) algorithms. In [3], an MPC algorithm for correctly tracking a sequence
of constant reference points is proposed. This involves constructing an observer based on the
LSTM network resembling the plant which is assumed to be stable itself. In [5] this approach
is being developed further to also be offset-free in case of output disturbances. This is accom-
plished by introducing a disturbance model in the LSTM-based observer [5]. In [6] an MPC
algorithm is proposed which does not require any assumptions regarding the plant’s stability.

This report considers an LSTM network identified from a plant’s available data. It mainly
addresses two questions: first, if and how the trained network can be analyzed to say if it
is stable or not and second, if there is a way to force the LSTM to be stable during the
identification process given a stable plant.



2 Input-to-State Stability for LSTM Networks

We are considering the system X, which is defined as follows.

it = f(i,u) (1)
§=h), (2)

using only data of the input u and output §. Thereby, ¥ is stable, non-linear, time-invariant,
and its input u is bounded: ||ul|oo € [tUmin, Umaz]-

To specify the exact meaning of stability, input-to-state stability (ISS) and incremental input-
to-state stability (JISS) are defined below. They provide a notion for stability with respect to
an input signal being present. To be able to define ISS and JISS, comparison functions need
to be defined first. The definitions are as follows [7].

i
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Definition 1 (Comparison functions).

K ={a:R" - R | a continuous, strictly increasing, «(0) =0}
Ko ={a: Rt - R | @ € K, a unbounded}
KL ={B:RT x Ny — R | B cont., B(-, k) € K,

B(s,-) strictly decreasing, klim B(s, k) =0}
—00

Definition 2 (Input-to-state stability (ISS)). System X is called input-to-state stable in a state
space X C R™ with respect to an input space U C R™, if there exist functions B € KL and
Y € Koo such that, for any k € No, any initial state xo € X, any inpul sequence (v(h))pen,,
it holds that:

lz()Il < B(|[zo1], k) + v (max[v(h)]])- (3)
where || - || denotes the Ly-norm and n, denotes the dimension of an arbitrary vector a.

Intuitively, if a system is ISS, its state gets near an equilibrium point after some transient
phase. Its distance from the equilibrium point is then bounded only by a function of the input
series.

Definition 3 (Incremental input-to-state stability (0ISS)). System X is called incrementally
input-to-state stable in a state space X C R™ with respect to an input space U C R™, if there
exist functions Bs € KL and vs € Koo such that, for any k € Ny, any initial states xo1, o2 € X,
and any input sequences ((v1(h))nen,, (V2(h))nen,), it holds that

@1 (k) — z2(k)|| < Bs(||wor — wozl|, k) + 75(1}11% [[v1(h) — va(R)]]). (4)

With dISS, the distance between the state trajectories evolving from two different values of
the initial state is considered. Intuitively, if a system is §ISS, the two trajectories eventually
get near each other. Their distance is then only bounded by a function of the distance of the
input series for the respective scenarios. Note that ISS is a special case of 6ISS where one of
the state trajectories is equal to 0, thus 6ISS implies ISS.

The objective is now to find a model for the system Y. In [3] this is done using a long
short-term memory (LSTM) network, which is defined below.



Definition 4 (Long short-term memory (LSTM)). The LSTM network is the following set of
equations

it =o0,(Wru+Up€ +bg) 0 & + og(Wiu+ U + b;) 0 oc(Weu + Uk + be), (5)
= 0,(Wou + Upk + b,) 0 .(27), (6)
y=CE+by. (7)

with an input u € R™, an output y € R™, ¢ hidden state x € R™#, an output state £ € R"¢,
an (overall) state x = (&, &)T, weight matrices Wiy, Wi, Wo, W, € R">" Uy Uy, Uy, Ue €
Rr#xne e R™ X" agnd bias vectors by, b, by, be € R™* and b, € R™. The activation functions
o4(x) and o.(x) are nonlinear functions with o4(x) = H% and o.(x) = tanh(xz). The
operation o is the element-wise product.

The parameters of the network, namely the weight matrices and the bias vectors, are chosen
to minimize cost function. In [3] this is the mean squared error (MSE) between the plant’s
output § and the network’s output y given a common input sequence. This is usually done
using an iterative, non-linear optimization algorithm, such as RMSProp. In [2] it is pointed
out that using a prediction error is possible as well. It could be examined further if this would
have any desirable effect on the training procedure or on the network’s performance.

When identifying a model from a plant, it is desirable for the model to behave as similar to
the plant as possible. Therefore, since the plant is stable, we require the LSTM network to be
stable as well. More precisely, we require that the network is ISS if the plant is ISS and that
the network is also ISS if the plant is JISS.

However, there is a special case of an LSTM network’s configuration where it does not fulfill
the inequation in Definition [2] anymore, but its state is still bounded. Take Definition [4] and
assume & = & = 0 and for all time steps the input w 0 as well. Then, to fulfill Definition
27 would need to be 0 as well. However, following Definition |4}, it would be a function of bias
terms:

& = 04(b;) 0 oc(be). (8)

Therefore, in [3] an alternative definition for ISS is used, which is as follows.

Definition 5 (Input-to-state stability (ISS) for LSTM networks). System ¥ is called input-
to-state stable in X with respect to U, if there exist functions f € KL and v,,v € Koo Such
that, for any k € Ng, any initial state xo € X, any input sequence (v(h))nen,, and any bias
b. € R, it holds that:

(o)l < B([lwoll, k) + v (max [l (R)[]) + v (llbell). 9)

Apart from the above motivation, an LSTM network being ISS or §ISS has some other
advantages. At the start of inferring an output series from it, the state has to be initialized.
This is usually done randomly, without any prior knowledge about the plant itself or its state.
If an LSTM network is ISS, its state eventually is bounded only by the input and a constant
bias. This is true regardless the value of xg. If an LSTM network is dISS, the distance of
two trajectories eventually gets equal to each other given the same input series. Therefore,
the state initialization does not affect predictions on the long term. Other than that, ISS
enables for guarantees regarding the bounds of state and output in practical situations which
is relevant e.g. when considering safety.



This motivates the question, if it is possible to guarantee ISS or JISS for an LSTM network
formally. In [3] Theorems [1| and [2] are derived that give sufficient conditions for an LSTM
network to be ISS or 6ISS.

Theorem 1. The LSTM network is 1SS with respect to the input u and bias b, if A is Schur,

where
g T ||U] ]

A=
[0905 G0 g||Ue||

(10)

Theorem 2. The LSTM network is §1SS with respect to the inputs uq and us if As is Schur,
where

ol
_ O-Q «
4s laZag a2 + L2 ||, | (1)
with
*C
*HUfH L Cf + 71Ul + 5 HUiHEE- (12)

The symbols o7, Eg, ¢, o¢ denote upper bounds for the corresponding activation functions
in Definition [, Theorem [I] is proven by for each of the state equations in Definition [4] taking
the norm on both sides, and finding upper bounds of its components to get an inequation of

the form .
27| |||

where g resembles the upper bound of the right-hand side of the ininequation. The inequation
can be reformulated to be

|27 < Allz]] + Bullull + By|lb]l. (14)

with A € R?*2 B, B, € R?*!. Tterating ((14])) and again taking the norm on both sides leads
to an inequation of the same form as in Definition |5 with 3(||xo||, k) = ||A¥|| ||xo||. Hence, if
A is Schur, g € KL and therefore, the LSTM network is ISS. Theorem [2]is proven in a similar
way, but considering the distances of two state trajectories instead of one state trajectory itself.

Using Lemma [I} Propositions [I] and [2] are derived that give easy-to-check criteria for the
conditions in Theorems [I] and 2

Lemma 1. Given a 2 x 2 real matriz A, it is Schur if and only if
—l—a<b<l, (15)
where a = —Aq11 — Aoy and b = A11 A9y — A9 A97.
Proposition 1. A is Schur if and only if the following inequation holds:
&+ 50T |U| < 1. (16)

Proposition 2. Ag is Schur if and only if the following inequation hold:

1 1
—1+E£+a6§+155|\U0|| < 105 a||U|| < 1. (17)



3 Enforcing ISS or /ISS during ldentification

The inequations in Propositions [I] and [2] allow for checking stability of an LSTM network after
completing the identification procedure. For a possible application this could mean repeating
the identification multiple times until the desired criteria are fulfilled. It would be much more
practical, if there was a strategy to force the parameters of the network during training towards
fulfilling the desired stability criteria. In 3] this is done by augmenting the loss function. Here,
the procedure is explained only for enforcing ISS. However, enforcing 1SSrequires just the same
steps.
Without augmentation, a standard loss function for training the network looks as follows

Z 15(k) — y(k)|13, (18)

where ¢ is the output of the original system X (see (1)) and y is the output of the LSTM
network (see Definition . To incorporate the inequation from (1| in it, it is reformulated so
that the right-hand side is zero:

o)+ 797, ||U] — 1 <0. (19)

The term on the right-hand side is called the residual term r. To enforce r < 0, the loss
function can be augmented to be

Z l5(k) — y(b)| 13+ o0

+pr.

where p € R is a hyper-parameter to be chosen.

The authors of [3], however, choose to augment the loss function with a piece-wise linear
function in r to avoid too large fulfillment of the ISS criterion while being less optimal consid-
ering the MSE:

N—
LOV.0) —2 3 ) — w1+
k=0

+ (p~ min(r,0) + p* max(r, 0))

(21)

where pT, p~ € R are hyper-parameters to be chosen. Additionally, the authors report rather
small values for p* (magnitude of 1073) and p~ (magnitude of 107°).

For enforcing JISS, one needs to consider the inequations from Proposition [2] instead. The
procedure, however, is the same as above. Note that Proposition [2| contains two inequations
and thus would yield two residual terms.

4 Conclusion

This report addressed the stability analysis of LSTMs for their use in system identification of
stable non-linear systems. Several stability definitions for non-linear systems were investigated.
Formal conditions for ISS/6ISS of an LSTM network were reported and a method for enforcing
the ISS/0ISS property of an LSTM during training given an ISS/4ISS plant was proposed.



Further research could include stability analysis of different model types, data-driven system
identification and control of unstable systems (where [6] could be a good starting point), prob-
abilistic methods for system identification accounting for model uncertainty and incremental
training techniques, as suggested in [4].
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