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Abstract

Automatic music generation (AMG) systems are computer-based models that

produce signals that can be interpreted as music, such as waveforms or note se-

quences. Apart from purely commercial motivations, like the creation of a poten-

tially unlimited amount of music, such systems are also interesting from a creative

point of view, since they could be used for support during the music composition

process, or even be understood as a new type of instrument. In this work, the

flat variant of the AMG system MusicVAE is re-implemented and trained. It is

used for unconditioned generation of monophonic note sequences of two bars in

length. MusicVAE is a variational auto-encoder. It maps a given note sequence

to a multivariate Gaussian distribution in a lower-dimensional space (called la-

tent space). From that distribution, it samples a vector and decodes it to another

note sequence. The model can be trained so that the reconstructed sequence is as

similar as possible to the input sequence. By randomly sampling and decoding

vectors from the latent space after training, new pieces of music can be generated.

In this work, a set of generated note sequences is compared to a held-out test set

using selected objective criteria and a subjective analysis. It is shown that the

trained model struggles to reproduce the rhythmic structure of the training data

and that generated note sequences often contain large jumps in pitch and single

non-diatonic notes. Despite such outlying notes, most note sequences contain co-

herent and diatonic melodies. In particular, interesting rhythms and melodies with

multiple high, short notes followed by few longer notes are generated. In future

work, ways to condition the latent space could be examined to find possibilities

of controlling the generation process.
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Zusammenfassung

Automatische Musikgenerierungssysteme (AMG) sind computerbasierte Mo-

delle, welche Signale produzieren, die als Musik interpretiert werden kön-

nen, zum Beispiel Schwingungsverläufe oder Notenfolgen. Abgesehen von aus-

schließlich kommerziellen Motivationen, wie der Kreierung einer potentiell un-

limitierten Menge von Musik, sind solche Systeme auch unter dem Aspekt der

Kreativität interessant, da sie für die Unterstützung des Kompositionsprozesses

genutzt oder sogar als eine neue Art von Musikinstrument verstanden werden

können. In dieser Arbeit wird die flache Variante des AMG-Systems MusicVAE

neu implementiert und trainiert. Dieses wird für die unbedingte Generierung mo-

nophonischer Notenfolgen mit einer Länge von zwei Takten verwendet. Mu-

sicVAE ist ein Variations-Autoenkodierer. Es bildet eine gegebene Notenfolge

auf eine multivariate Gauß-Verteilung in einem niedriger-dimensionalen Raum

(genannt latenter Raum) ab. Von dieser Verteilung zieht es nach dem Zufallsprin-

zip einen Vektor und dekodiert diesen wieder zu einer Notenfolge. Das Modell

kann so trainiert werden, dass die rekonstruierte Notenfolge so ähnlich zu der

Eingabefolge ist wie möglich. Nach abgeschlossenem Training können neuartige

Musikstücke generiert werden, indem Vektoren zufällig aus dem latenten Raum

gezogen und dekodiert werden. In dieser Arbeit wird ein Satz von generierten

Notensequenzen mit einem vorbehaltenen Testdatensatz verglichen, indem ausge-

wählte objektive Kriterien angewendet und eine subjektive Analyse durchgeführt

werden. Es wird gezeigt, dass das trainierte Modell die rhythmische Struktur der

Trainingsdaten nur mit Schwierigkeit reproduzieren kann und generierte Noten-

sequenzen oft große Tonhöhensprünge und einzelne nichtdiatonische Noten auf-

weisen. Trotz solcher unpassenden Noten beinhalten die meisten Notensequenzen

zusammenhängende und diatonische Melodien. Insbesondere werden interessan-

te Rhythmen und Melodien mit mehreren hohen, kurzen Noten, gefolgt von we-

nigen längeren Noten generiert. Künftige Arbeit könnte Wege untersuchen, den

latenten Raum zu konditionieren mit dem Ziel, Möglichkeiten zu finden, den Ge-

nerationsprozess zu kontrollieren.
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Chapter 1: Introduction

Music generation is the task of computer-based creation of signals that can be inter-
preted as music. Systems with the purpose to fulfill this task are called automatic

music generation (AMG) systems. Such systems could help finding new ideas during
composition, be used as companions during live performances, create a potentially un-
limited amount of music for creative productions, and they could even be understood
as a new type of instrument, thus adding a new dimension to making music.

However, there are some ethical issues about creative content generated by ma-
chines. Training models on copyrighted data is a gray area (Creative Commons, 2021),
so it is hard to say if it is even legal to use such models commercially. Furthermore, it
can be discussed if it is even acceptable to use develop and deploy an AMG system for
the creation of “new” art or commercial success, where the basis for it is actually the
art of other people. Another potential drawback of AMG systems could be a decreas-
ing demand for professional creators in the future. For example, it could be financially
more favorable for a marketing team to buy a software for producing jingles than hir-
ing a composer. In contrast, AMG systems can be used by artists themselves, serving
as a supportive component in the creative process.

Music can either be generated directly as a waveform, as the systems proposed
by Agostinelli et al. (2023) and van den Oord et al. (2016) do it, or it can generate a
sequence of symbols, e.g. in the format of MIDI (Lehrmann, 1993), where a musical
piece is just described, but can be interpreted. The second type will be called sym-

bolic music, which is the subject of this thesis. Furthermore, music can be contain
multiple notes played simultaneously, which is called polyphonic music or just one
note at a time, not overlapping with other notes, which is called monophonic music.
Monophonic music will be of interest in this work.

There are different tasks of symbolic music generation (see recent surveys by
Briot (2021) and Hernandez-Olivan et al. (2022) for more details). They can be cat-
egorized by unconditioned and conditioned generation. Unconditioned generation is
the task of generating new excerpts from scratch, i.e. without any prior or user-defined
conditions. The style would be whatever the training data was. Conditioned generation
is the task of generating a piece of music following given constraints, such as tempo
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or key. Conditioned generation can again be divided into several subcategories: musi-
cal in-painting, style transfer, accompaniment, and continuation. Musical in-painting
is the task of generating a sequence of notes that connect a starting and an ending
piece of music (Huang et al., 2017). Style transfer is the task of changing the style
(which could mean genre or composer in the context of music generation) of a given
piece (Brunner et al., 2018). Accompaniment is the task of generating a musical voice
dependent on other voices that are given. An example would be to generate a chord
sequence to a given melody (Dong et al., 2018). Continuation is the task of generating
sequences following a priming sequence or note. Continuation and Accompaniment
could also be considered as sub-types of conditioned generation (Eck & Schmidhuber,
2002).

The task considered in this thesis is generation of symbolic monophonic music
where the focus will be on unconditioned generation and Western music. During the
process of composition, music is often written down symbolically. A tool that gener-
ates music in that form could be useful in that case, rather than a waveform-generating
system and, apart from that, such a tool can even be simpler, because it has a lower-
dimensional output. A use case for unconditioned generation is the search for new
impulses for the composition process. A system that is able to generate monophonic
music can be used to compose leading voices or motifs. Using such a model, a com-
poser could collect new impulses to look at his work from another perspective. Only
Western music is considered, because of the musical background of the author.

The task has been worked on for many decades. An early approach to
computer-based symbolic music generation was proposed by Hiller and Isaacson
(1959). In their experiments, they generated pieces by choosing notes automatically
following a set of rules. These rules were standard counterpoint composition rules
as explained by Morris (1975) or formulated as Markov chains (for an explanation of
Markov chains, see Gagniuc, 2017) with chosen transition probabilities. Today, many
models use deep-learning approaches to model music, as it can be seen by the survey
of Hernandez-Olivan et al. (2022). Due to the relevance of the approach of deep learn-
ing in the field of music generation, the focus here will be on recent and especially
deep-learning methods.

In this thesis, the state of the art will be summarized. A model based on the
AMG system MusicVAE, proposed by Roberts et al. (2018), will be implemented and
trained. MusicVAE was chosen, because it is able to learn an embedding space that is
shaped in a specific way and where each vector corresponds to a musical excerpt. This
makes it possible to add conditioning in the future, for example by trying to influence
the structure of the embedding space based on given distributions. The training dataset
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will consist of monophonic note sequences of two bars, since that was also the case for
the training data used by the authors of MusicVAE. Excerpts will then be generated
and their quality be discussed.
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Chapter 2: Musical Background

Cambridge University Press & Assessment (2023) defined music as “a pattern of
sounds made by musical instruments, voices, or computers, or a combination of these,
intended to give pleasure to people listening to it”. The goal of this chapter is to intro-
duce some fundamental concepts of music theory. For a more exhaustive introduction,
the textbook by Gotham et al. (2021) can be consulted.

In Western culture, music is traditionally written using a specific notation called
score notation. Two bars in score notation are shown in Figure 2.1. Part of that notation

Figure 2.1: Two-bar musical score.

are symbols called notes. Each note corresponds to a tone being played or sung, and
contains information about which fundamental frequency this tone has and how long
it is to be held. A section of music without any notes is designated by one or more
symbols called rests.

The set of possible pitches can be arranged over a discrete scale. The smallest
unit of pitch that is considered in this thesis is called semitone. Twelve subsequent
semitones form an octave. A pitch without the consideration of the octave is called
pitch class. The pitch of a note is written as a combination of a pitch class and an
octave. A pitch class corresponds to an element of the set {A,B,C,D,E,F,G}×{ ,#},
where the symbol # raises the pitch class by one semitone. The specific octave con-
sidered is written as an index of the pitch class symbol where that index is in [−1,9].
As an example, A is a pitch class, but the corresponding specific pitches are A−1 to A9.
The lowest pitch class in an octave is C. Table 2.1 shows what notation corresponds to
which semitone number within an octave.

Subsets of pitch classes that sound pleasant when played together can be de-
fined. Such subsets are called keys. Each key has a pitch class that can be seen as its
center. This pitch class is called root. Each pitch class can be the root of a key. A key is
further described by the intervals in semitones between its root and the remaining pitch
classes in the key, regardless of the specific root note. Two common types of keys are
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Table 2.1: Pitch class names

Pitch class in semitones Pitch class name

0 C
1 C♯
2 D
3 D♯
4 E
5 F
6 F♯
7 G
8 G♯
9 A

10 A♯
11 B

Table 2.2: Note value for note lengths expressed in 16th notes.

Note value Duration in 16th notes

16th note 1
eighth note 2

quarter note 4
half note 8

whole note 16

the major and the natural minor key (here, just minor key). The pitch classes contained
in a key relative to the root note in the case of a major key are 0,2,4,5,7,9,11 and
those contained in a minor key are 0,2,3,5,7,8,10. A key is then referred to as e.g. the
key of C minor. An excerpt that generally belongs to one of these keys is said to be
diatonic1.

Different note lengths are defined in relation to each other. The smallest note
length considered in this thesis is a 16th note. All other note lengths (considered in
this thesis) can be expressed in multiples of 16th notes. Notes can be named based on
their duration. This name is then called note value. Table 2.2 shows what note value
corresponds to which number of 16th notes. If a note with a length of l 16th notes is
dotted, i.e. if there is a dot right after it in the score notation, its duration becomes
l + l/2. The point in time where a note is started to be played is called onset and the
point in time where a note is stopped being played is called offset. Rhythm can be seen
as the pattern of onsets and releases of notes in a piece. The sequence of notes in a

1The concept is complicated, but interested readers should refer to Kostka et al. (2018)
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score can be subdivided into intervals called measures or bars. Each measure contains
specific points in time to which the rhythm is oriented. These points are called beats,
they are usually evenly spaced throughout a measure. In this thesis only pieces will be
considered where every measure contains four beats and one beat consists of four 16th

notes. This pattern is referred to as a time signature of 4⁄4.
The positions in a bar can be organized hierarchically into levels. Every first

beat called a downbeat and therefore said to be on downbeat level. Every second beat
is said to be on half-note level, every fourth, on beat level or quarter-note level. These
levels are referred to as metrical levels in general and the specific positions (e.g. the
2nd downbeat) are called metrical positions. There are also smaller metrical levels: a
metrical position on the first or third 16th note of a beat is said to be on eighth-note

level and a metrical position on a 16th note is said to be on 16th-note level.
In computer software, notes can be stored in different formats. One format is

Musical Instrument Digital Interface (MIDI) (Lehrmann, 1993). Originally, it was a
protocol for music instruments containing a digital interface communicating with each
other. However, it can also be used to store musical notation as a file. The MIDI
standard defines a pitch as an integer in [0,127] with a pitch of 60 corresponding to C4.
This convention will be adopted for this work.

One point to be considered in this thesis is the long-term structure of music.
A musical piece is build up of multiple measures that together form a higher-level
structure. This repeats over multiple levels. This can easily be seen by listening to an
arbitrary pop song, where multiple bars are built together to form sequences of bars
that again form a structure of verses, refrains, and interludes. Thus, the structure of
music is hierarchical, which is important to note for subsequent chapters.
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Chapter 3: State of the Art

Several mathematical models were used for symbolic music generation, such as
Markov chains (Hiller & Isaacson, 1959) and neural networks (Todd, 1989). In this
chapter, an insight into the state of the art of AMG is provided.

Many recent approaches can be found within the field of deep neural networks
(Hernandez-Olivan et al., 2022). A basic textbook providing an introduction to that
field is the one by I. Goodfellow et al. (2016a). It can be consulted for a deeper in-
sight into the topic. Basically, a neural network is a mathematical model containing
many parameters. The examples named in this thesis can be seen as models to ap-
proximate an unknown function. To achieve that, the parameters of such a model have
to be optimized to minimize a given loss function. For optimization, algorithms like
stochastic gradient descent or variants and the back-propagation of the error signal are
used (Bottou, 1999). For generation, a basic architecture is often used nested within
another, higher-level model. The basic architecture will be called backbone and the
higher-level model, generative model. The backbone is designed or chosen so that it
can process the considered type of data, such as images or time series. The genera-
tive model defines the rough structure and the training procedure and makes use of the
backbone to actually process the data.

Section 3.1: Backbone Architectures

Section 3.1.1: Fully-Connected Layers

One component that is used often in neural networks is the fully-connected layer (I.
Goodfellow et al., 2016a), which is an affine transformation followed by an activation
function f :

y = f (Wx+b), (3.1)

where f is the activation function, x is the input vector and can be of any dimension,
and W is a matrix. W is called weight matrix and b, bias vector. All values of x,
W , and b are in R. The activation function can be any differentiable function. In
the simplest case, the activation function is f (x) = x, but it can also be chosen to
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Figure 3.1: Fully-connected layer, where x = (x1,x2)
T and y = (y1,y2,y3)

T .

be non-linear, e.g. f (x) = tanh(x). When the term fully-connected layer is used in
the following text without any comment on f , it is assumed that f (x) = x. A fully-
connected layer therefore has an input dimension, which is equal to the dimension of
x and an output dimension. In the following text, the output dimension will be called
dimension of the fully-connected layer, since the input dimension is clear from the
input. The fully-connected layer can also be seen as a directed non-cyclic graph, as
visualized in Figure 3.1.

Section 3.1.2: Recurrent Neural Networks

Recurrent neural networks (RNNs) are neural networks that contain feedback connec-
tions. They can be used to model sequential (e.g. time) data. However, the problem
with traditional RNNs like those described by Todd (1989) is that during learning, the
error that is propagated back through time either vanishes or increases exponentially.
This is not desirable, since a very high gradient leads to the weights oscillating so the
model does not find potential minima during training and a vanishing gradient leads to
the model not being able to learn long-time dependencies.

Hochreiter and Schmidhuber (1997) therefore proposed long short-term
memory (LSTM), an architecture that enforces constant error flow. A state-of-the-art
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Table 3.1: Names of the LSTM’s components.

it ... input gate
ft ... forget gate
gt ... input activation

ot ... output gate
ct ... cell state
ht ... hidden cell state

Figure 3.2: LSTM. Adapted with changes from Olah (2015).

LSTM can be described by the following equations (Sak et al., 2014):

it = sigmoid(Wiixt +bii +Whiht−1 +bhi) (3.2)

ft = sigmoid(Wi f xt +bi f +Wh f ht−1 +bh f ) (3.3)

gt = tanh(Wigxt +big +Whght−1 +bhg) (3.4)

ot = sigmoid(Wioxt +bio +Whoht−1 +bho) (3.5)

ct = ft ⊙ ct−1 + it ⊙gt (3.6)

ht = ot ⊙ tanh(ct). (3.7)

Variables with the index t − n refer to the value of that variable to the (t − n)th time
step. The symbol W refers to a weight matrix and the indices show what exact matrix
is meant. The matrix Wi f is the matrix that is applied to the input to yield a summand of
the forget gate. All other matrices and bias vectors are named following that scheme.
The operation ⊙ is the element-wise vector product, and sigmoid(x) is defined as:

sigmoid(x) =
1

1+ exp(−x)
. (3.8)

The concept of peephole connections, as mentioned by Sak et al. is omitted here. Each
function is named following Table 3.1. The purpose of the input gate is to protect
the state from irrelevant inputs. The output gate protects other layers from irrelevant
values stored in the cell state (Hochreiter & Schmidhuber, 1997). The forget gate’s
purpose is to reset out-of-date cell state values. A graphic visualizing the equations
above is shown in Figure 3.2. From Equations (3.2) to (3.7) and Figure 3.2, it can
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Figure 3.3: BRNN. Adapted from Schuster and Paliwal (1997).

be seen that the dimension of ct and ht has to be equal. The term hidden-state size

therefore refers to both, the dimension of ht and that of ct . Given an input sequence of
(x1,x2, ...,xT ), where T refers to the number of time steps, the output of an LSTM is
either the sequence (h1,h2, ...,hT ) or just the final hidden state hT .

There are several variants of LSTMs. Multiple LSTM layers can be stacked,
in that sense that the input sequence to the next LSTM layer is the output sequence
((h1,h2, ...,hT ) of the previous LSTM layer). Schuster and Paliwal (1997) mention
that it could be useful to incorporate future information into the current state or the
output of an RNN. For this reason, they proposed bidirectional RNNs (BRNNs, or
BLSTMs in case the RNN is an LSTM). They consist of two independent RNNs,
the first processing the input data in positive and the second, in negative time direc-
tion simultaneously. A schematic is shown in Figure 3.3. The concept of multi-layer
LSTMs and BLSTMs combined leads to an ambiguity: a BLSTM with multiple layers
could either be two multi-layer LSTMs that are combined to one BLSTM or multiple
BLSTMs stacked onto each other. To resolve this ambiguity, the former will be called
multi-layer BLSTM and the latter will be referred to as stacked BLSTM from now on.

Section 3.1.3: Other Backbone Architectures

There are many other components that can be used. Since they are relevant for ex-
plaining example AMG systems in Section 3.4, convolutional neural networks and
transformers will be introduced in this section.

Convolutional neural networks (CNN) were originally proposed by Fukushima
(1980). The input to a convolution layer can be a tensor, which is called feature map

in this context. The convolution layer itself is defined by another tensor, called kernel.
The convolution is then performed by sliding the kernel across the input feature map.
For each kernel position the output of the convolution operation for that position is
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calculated by multiplying the corresponding elements of kernel and input feature map
and summing the resulting products. By sliding the kernel across the input feature map
repeating this operation for every position the result is another tensor, called output

feature map.

As it can be read in the survey by Hernandez-Olivan et al. (2022), much atten-
tion has recently been paid to the transformer architecture proposed by Vaswani et al.

(2017). Transformers are designed to process sequential input data, but in contrast
to RNNs, transformers can process a sequence all at once without requiring sequen-
tial computations per element of the input sequence. Instead, it is entirely based on a
mechanism called attention to retrieve the context of a token. Huang et al. (2018) and
Jiang et al. (2020) used a transformer for sequence generation.

Section 3.2: Generative Models

The purpose of a generative model is to generate samples from an underlying distri-
bution (Bond-Taylor et al., 2022). As Bond-Taylor et al. explained, There are several
types of generative models. Apart from other models, the variational auto-encoder will
be discussed in more depth, since it is relevant for understanding MusicVAE. One of
the other generative models explained is called autoregressive model. It models the
data to generate as a sequence and generates that sequence element by element and the
probability of one element being generated depends on all elements in the sequence
that were generated before (Y. Bengio et al., 2003). Autoregressive generation can be
applied using e.g. RNNs. The input for the first time step can be given. The output of
that time step is then fed back as the input for the next time step. All output elements
together form the generated sequence.

I. J. Goodfellow et al. (2014) proposed an architecture called generative

adversarial network (GAN). It consists of a generative model (called generator) and
a discriminative model (called discriminator). The generator’s task is to learn the
distribution of the training excerpts, while the discriminator’s task is to estimate the
likelihood that the example is generated by the generator or drawn from the training
set. During training, the generator’s goal is to learn the distribution of the training set
so well that the generated data cannot be distinguished from training data anymore,
i.e. that the discriminators decision if a sample is generated or original is wrong has a
probability of 0.5.

The generative model used by MusicVAE (Roberts et al., 2018) is the
variational auto-encoder, proposed by Kingma and Welling (2014), so it will be ex-
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plained in more detail. First, some notation has to be clarified. Kingma and Welling
(2019) stated that in machine learning, one is often interested in finding probabilistic
models of phenomena from data and that such models can be written as probability
distributions. Let an uppercase letter, like X , be a random variable. The sample space
of the random variable is denoted as the script version of the letter representing the
variable, here X . Each element of the sample space is a vector of values of values of
all observed variables, flattened, and concatenated. Unless stated otherwise, a sample
is denoted as the lowercase variant of letter representing the random variable, for ex-
ample, x. The probability distribution of a random variable X is denoted as lowercase
letter with the variable it belongs to in brackets, e.g. p(X). The probability of a specific
sample x being drawn from such a distribution is denoted as p(x) (meaning p(X = x)).
Let pθ (X) be a probabilistic model that approximates the true, but unknown distribu-
tion of X . The variable θ denotes the parameters of that model. If the true distribution
is conditional with respect to another random variable C, it can be approximated using
a model pθ (X |C). Following Kingma and Welling, conditioned variables can be con-
sidered as input to the model. The authors stated that one way to parameterize such a
probabilistic model is by using neural networks. In the context of VAEs, the existence
of another random variable Z (aside from X) is assumed. This variable is said to be
unobserved and yet it is part of the model. Such a variable is called a latent variable.

Cinelli et al. (2021a) explained that a VAE consists of two probabilistic models,
the encoder and the decoder. During forward propagation, a sample x gets fed into the
encoder model that maps it to a distribution over the latent variable Z. This distribution
is conditional with respect to X . Hence, the encoder is denoted as qφ (Z|X) (with q

being a probability distribution and φ being the parameters of it). The sample space
of Z is called the latent space and an element in it is called a latent vector. Bowman
et al. (2016) stated the distribution that x is mapped to is often chosen to be a Gaussian
distribution with a diagonal covariance matrix. The encoder can be parameterized as
a neural network that outputs the vectors µ(x) and σ(x) of a multivariate Gaussian
N (µ(x),diag(σ(x)2)) where σ(x)2 is the element-wise product of σ(x) with itself
(Kingma & Welling, 2019). From the resulting distribution, a sample z is drawn and
passed through the decoder returning a distribution over X (Cinelli et al., 2021a). This
distribution is conditioned with respect to Z. Hence, the decoder is denoted as pθ (X |Z).
A sample from that distribution is denoted as x̂. Cinelli et al. noted that the most
probable sample from the output distribution should be similar to x after optimization.
The overall structure of a VAE is shown in Figure 3.4.

Following Bowman et al. (2016), the optimization objective used for the train-
ing consists of two components. First, there is the reconstruction loss. The higher it
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Encoder Decoder

Figure 3.4: Variational auto-encoder.

is, the less similar x̂ and x are. Second, there is the Kullback-Leibler (KL) divergence.
The higher it is, the less similar the output distribution qφ (Z|x) of the encoder is to
a given distribution p(Z). The latter is also called prior distribution. Bowman et al.

noted that the model is regularized during training by the KL divergence term so that
the output distribution of the encoder is close to the prior distribution, which is often
a spherical Gaussian. They stated that this regularization leads to the decoder being
able to reconstruct samples successfully when the given latent vector is sampled from
the prior distribution. Another way to think about that is that the decoder learns to
reconstruct only those latent vectors it gets as input. Those vectors are sampled from
the output distributions of the encoder. If the output distributions of the encoder never
have a high probability in a certain region, there probably would no latent vectors be
drawn from that region and the decoder would never learn to reconstruct those. Such
regions are called holes. Another effect of that regularization is that two latent vectors
that have a small euclidean distance to each other are decoded to samples that are sim-
ilar to each other (Cinelli et al., 2021b). This can be verified by the fact that a sample
x is encoded to a distribution. The optimization objective encourages the VAE to learn
that a sample x̂ that is decoded from a sample from that distribution should be similar
to x. It also learns that the distributions of different inputs should overlap. Given two
distributions are retrieved from the encoder and they are near to each other, maybe
overlapping. In this case, the model learned to decode these neighboring sequences to
highly different samples in the data space. If then a sample is drawn from the over-
lapping area, this sample is almost equally different to both of the different original
data samples. This would lead to the optimization objective penalizing that behavior,
hence similar data samples are likely to be encoded to neighboring regions in the latent
space.

A latent space that has few holes and whose latent vectors which are near to
each other decode to similar samples is considered desirable, hence it is called well-

formed. Figure 3.5 shows two toy examples to illustrate in which case the latent space
is well-formed and in which not. One reason why a well-formed latent space is desir-
able is that one could achieve unconditioned generation of new samples, which is the
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(a) Not desirable. (b) Desirable.

Figure 3.5: Visualization of two toy examples with a one-dimensional latent space to
illustrate the meaning of well-formed latent space. It is assumed that a
VAE was trained with two samples in the training dataset. The probabil-
ity density functions of the corresponding encoder output distributions are
shown as green and orange curves and that of the the prior distribution
p(Z) =N (0,1) as a blue one. In case (a), the decoder probably did not get
values of z within [0.5,1.5] as an input, which have a high probability un-
der the prior distribution. In case (b), the decoder probably got most values
as input that have also a high probability under the prior distribution.

subject of this thesis, by sampling a vector z from the prior distribution and passing it
to the decoder. With a well-formed latent space and a model optimized to yield low
reconstruction loss, the decoder would return an sample x̂ that is likely to be in the
distribution of the training data, i.e. in the case of music, x̂ would be a reasonable-
sounding musical piece in most cases.

The VAE algorithm contains a sample operation, namely the sampling of the
latent vector. During training, the loss has to be propagated back through the model. To
be able to apply standard back-propagation rules, Kingma and Welling (2019) suggest
not to sample directly from a distribution N (µ(x),diag(σ(x)2), but to calculate the
sample z in the following way

z = µ(x)+σ(x)⊙ ε, (3.9)

where ε ∼ N (0, I). Since only the computation path of µ and σ contain weights
that have to be adjusted, the error does not have to be propagated through a sampling
operation. This is called the reparameterization trick.
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Figure 3.6: Piano roll.

Section 3.3: Representations Used for Symbolic Music
Generation

When encoding a musical score, several aspects have to be considered: the onset of
a note, its duration, the presence of rests, simultaneous notes, the presence of notes
played subsequently without a rest. Each representation has to answer at least these
questions.

Dong et al. (2018) and Yang et al. (2017) used piano rolls. In their context,
a piano roll is an image of which note is played when, but notes are not written in
the classical way. Instead, they are visualized in a diagram where the y-axis (discrete)
corresponds to the pitch and the x-axis (discrete or at least theoretically continuous), to
the time. A note is then displayed as a bar at a specific pitch, starting at a the onset time
and having the length corresponding to the note’s value. If there is a rest, there simply
will be no bar at that time interval. Multiple notes played simultaneously are encoded
as multiple parallel bars. The only difficulty is to represent two notes of the same pitch
played after another, because in the most simple case that could be shown as one bar
containing both subsequent notes. A piano roll is shown in Figure 3.6. Since Dong
et al. and Yang et al. used CNNs, they can use these image representations directly for
the processing with their models.

Other models encode music using token sequences, where each token encodes
a time step with a specified length. In order for this to be possible, a given track
has to be quantized. Given, the downbeat (first beat of a measure) times are known,
this can be done by subdividing each measure by a specified fraction. Each token
would then represent one fourth, one eighth, etc. of a subdivided measure. A problem
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with quantization is that this could lead to the loss of information. As an example,
there could be subsequent onsets of 16th notes in a track. Such a sequence would
get destroyed by a quantization by eighths. A policy of how the scores are quantized
needs to be defined for such cases. It is also possible to quantize based on absolute
time, instead of fraction of a measure, like Huang et al. (2018) did.

One token encodes an event occurring within its step, be it a note onset, a rest
or the continuation of a note with a value longer than one time interval. A token could
be e.g. a number, a string, or vector of numbers. Hadjeres et al. (2017) defined their
tokens in the following way: onset is encoded with a token being the pitch and if a note
is held for subsequent steps, the token has a specific “hold” value. In contrast, there
is the representation used by Eck and Schmidhuber (2002): a note is represented by a
hot-pitch vector (the indices of the current token vector correspond to the pitches of the
played notes). They make no distinction between onset or continuation of a note. The
lack of this distinction leads to the problem that if a sequence contains a sub-sequence
of tokens having the same values, this could be interpreted as either multiple notes
with the same pitch played after another or one long note. If this case is possible, it has
to be defined how such a sub-sequence would be interpreted. Eck and Schmidhuber
name alternatives to circumvent this issue, but stick to the first variant.

There is also the possibility to choose an encoding that depends on more fea-
tures than just the absolute pitch. Mozer (1994), for example, did that. He encoded
the music not per time step, but per note and chose to include the position on the circle
of fifths and the position on the circle of pitch classes in the encoding in addition to
the absolute pitch. The circle of pitch classes (also called chromatic circle) is a cyclic
arrangement of notes where adjacent pitch classes are also adjacent on the circle. The
circle of fifths is a cyclic arrangement of notes where adjacent pitch classes on the
circle sound pleasing when played together. A similar encoding was chosen to encode
the length of a note. The motivation of such a representation is that notes that are per-
ceived as similar should have a small distance in the data space. As an example, C0

and C1 would have a smaller distance than C0 and F♯0. A visualization of the circle
of fifths, the chromatic circle and the absolute pitch used as an encoding is shown in
Figure 3.7
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Figure 3.7: Representation using the absolute pitch (pitch height), the chromatic circle,
and the circle of fifths. Adapted from Mozer (1994).

Section 3.4: Selected Examples of Music Generation
Models

This section contains an overview of various approaches to unconditioned generation
of symbolic music. Several models are compared to get an overview of the state of
the art. For a more exhaustive recent overview see Hernandez-Olivan et al. (2022)
and Briot (2021). Every model discussed in this section follows a specific generation
scheme. What all have in common is that they have to be initialized somehow. There
are different techniques to achieve this, e.g. setting a priming melody to be continued
(that can also be sampled randomly to achieve unconditioned generation) or a vector
with random values. Interesting is if the generated music sounds pleasant and if it
shows long-term structure. However, these points are difficult to compare, because few
works conducted the same evaluation procedures. Some models, e.g. the one proposed
by Eck and Schmidhuber (2002) were only evaluated qualitatively by the author.

Early approaches used RNNs to generate a sequence autoregressively note by
note. Todd (1989) described multiple architecture types that could be used for gen-
eration of note sequences. One of them is a three-layer network with two kinds of
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input nodes: nodes containing recurrent connections both from the output nodes and
themselves to store the context (called context nodes) and input nodes for initializing
(called plan nodes). Here, the input vector to the plan nodes is called plan vector.
Music is represented as a sequence of multi-hot vectors of size 15 containing one el-
ement for an “onset” signal. Every other element corresponds to a pitch in the key of
C. One vector corresponds to a time slice with the length of a fourth note. The model
is trained by learning a mapping from a set of plan vectors to a set of excerpts of 32
tokens. New excerpts are then generated by setting a new plan vector not being in the
training set. A sequence is generated note by note feeding back the output. Due to
the generated pitches being all in the same key, it is impossible for the model to gen-
erate pieces containing notes that might not fit to a specific key. This is a drawback
since musical pieces throughout many different genres often do not stick to one key
the whole time. More recent architectures do not make this assumption. Since the ar-
chitectures proposed by Todd are simple RNNs, they also suffer from the vanishing or
exploding gradient problem as it is explained in Section 3.1.2. The model did not learn
rhythmical properties nor the relationships between pitch changes or rests and onsets
well.

Eck and Schmidhuber (2002) encoded music as a sequence of multi-hot vec-
tors, each having the duration of an eighth note. They subdivided the vector’s elements
into two sections: one that generates chords and another that generates melody. The
network is trained to be initialized with a priming melody that is to be continued using
an LSTM for autoregressive generation. The generated token sequences are of length
96, which is three times as long as the sequences generated by Todd. Following Eck
and Schmidhuber, the generated excerpts sound like real music, but not with a good
quality. They found that the model learns to incorporate long-term structure within
the chord sequence, which is then used by the model to condition the melody. This
suggests that a possible way to incorporate long-term structure could be the use of
multiple components operating at different time steps.

Yang et al. (2017) proposed the model MidiNet. It is trained using a GAN
and discriminator and generator both are CNNs. Music is generated sub-sequence by
sub-sequence, where one sub-sequence consists of one bar, which is quantized by time
steps with the length of one 16th note each. A sequence is encoded as piano roll. A two-
bar sequence is then generated by passing a random vector into the CNN to retrieve
two bars of generated music. Apart from the generator and the discriminator, MidiNet
contains a CNN called conditioner CNN that to encode a given piano roll to a lower
dimensional representation, serving as conditioning information for the generator in
addition to the random vector. This is used to generate multiple bars subsequently by
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passing the last bar into the conditioner CNN to retrieve conditioning information for
the current bar. Furthermore, the authors proposed an alternative that can be condi-
tioned on a chord sequence that the melody in the generated sequence should follow.
A listening test shows that MidiNet produces pleasant-sounding excerpts at the same
level as similar models based on RNNs. Yang et al. pointed out that the first variant
of MidiNet generates bars that sound unexpected, which might be due to the fact that
the only information that is passed between bars for a longer time is the last bar. The
chord-conditioned variant, however, performed better in the listening tests. The reason
could be that the chords impose a long-term structure the melody then follows, just as
with the model proposed by Eck and Schmidhuber (2002).

Roberts et al. (2018) proposed the architecture MusicVAE. It is a variational
auto-encoder where both encoder and decoder consist of LSTMs. After training, new
excerpts can be generated by sampling a single latent vector from the prior distribu-
tion and using it to retrieve the initial state of the decoder. The decoder consists of
two LSTMs being arranged hierarchically. Thus, other than with the previous models
discussed, hierarchy is incorporated into the design of the model and not achieved by
the simultaneous generation or conditioning of chords. The first one decodes the latent
vector to a sequence of vectors autoregressively, each representing one bar. Each of
those vectors is then decoded by the second LSTM to generate bars. An excerpt is
represented as a sequence of multi-hot vectors each representing a time step with the
length of a 16th note. The authors found that the hierarchical structure was able to copy
the long-term structure of music. A user study suggested that there is no significant
gap between the musical quality of MusicVAE and that of human-composed music.
This model is interesting in particular, because of its hierarchical structure, seemingly
good results and the fact that one excerpt can be generated easily by just sampling a
single latent-vector from a probability distribution.

Another VAE, called TransformerVAE was proposed by Jiang et al. (2020),
but the encoder and decoder do not consist of LSTMs, but of Transformers. Music is
represented as a sequence of multi-hot vectors with the length of a 16th note. Durnig
training, excerpts are first encoded bar by bar leading to a sequence of latent vectors,
each representing one bar. Then, this sequence is reconstructed to lead to the original
excerpt. The latent vectors each contain representations based on the other vectors in
the sequence. If the last bar is equal to the first one, the corresponding latent vec-
tor might contain the information “this bar looks like bar 1”. The model can then be
used to encode a given sequence and change the properties of the whole piece by just
changing a singe latent vector. The authors stated that the transformer model is another
way of modeling long-term structure. TransformerVAE showed similar reconstruction
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accuracies than variants of MusicVAE, hence this architecture could be promising to
investigate further for music generation. To generate music unconditioned, the model
could be adjusted to encode the latent vector sequence in a one-dimensional repre-
sentation so that sampling of the latent vectors is easily possible, as in the case of
MusicVAE.

However, there are other approaches to AMG than those based on neural net-
works, for example the work of Collins and Laney (2017). They combine Markov
models (Gagniuc, 2017) with other processes, e.g. a pattern detection algorithm to en-
sure that the generated excerpts show long-term repetitive and phrasal structure. Yin
et al. (2023) discussed that a disadvantage of rule-based systems is their high cost
when it comes to designing them, but their reasons of their actions can be understood
easily. Deep learning models, however, tend to learn weight configurations that are
non-interpretable and need large datasets for training. They noted that the comparison
of music generation systems tends to focus on other deep learning models, omitting
non-deep-learning alternatives. The authors found that deep-learning methods did not
outperform non-deep-learning methods and that there is still a lot of potential for im-
provement for AMG systems in general compared to human-composed music.

Section 3.5: Common Evaluation Procedures

One class of questions that is desirable to be answered is that of the more subjective
ones, such as “Does the generated music sound pleasant?” or “Does the generated
music sound artificially created?”. To evaluate those, subjective evaluation procedures,
(i.e. listening studies) are performed, as it can be seen in the work of Dong et al. (2018),
Roberts et al. (2018), and Yang et al. (2017). Following Yang and Lerch (2020),
subjective evaluation should even be first choice to evaluate criteria that have to do
with creativity. However, to conduct a user study well, resources, such as money, time,
or subjects are needed and a lack of those can result in problems regarding reliability,
validity and replicability of the results. Alternatively, generated excerpts could be
evaluated qualitatively by the author. In this case, the goal would be to show that
the generated music somehow looks like real music. Of course this does not replace
a proper user study, because of the lack of a large ensemble of opinions creating a
differentiated picture of the perception of the generated music, but it could be a useful
part of the evaluation for this thesis.

Additionally, there are measures to evaluate music generation from an objective
perspective. These can then be used for e.g. the analysis of a dataset of excerpts or the
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comparison of different datasets like a test set and a set of generated music. Yang and
Lerch (2020) proposed a complete framework to evaluate systems that generate sym-
bolic music and, as a part of this, they look at possible objective evaluation measures.
At first, the authors name the possibility to retrieve the likelihood of the generated data
as it is done in other works, but they also mention that multiple aspects of the output
should be evaluated as well. They proposed domain specific features that each can be
calculated for a sequence of notes to retrieve a more interpretable representation of the
data in terms of rhythm and pitch and could lead to a better comparability between
systems if standardized:

1. Pitch count: number of pitches in a sequence

2. Pitch class vector: vector of which pitch class occurs how often

3. Pitch class transition matrix: a transition matrix computed by counting the pitch
class transitions for each subsequent pair of notes

4. Pitch range: the difference between the highest and the lowest pitch in semitones

5. Average pitch interval of two subsequent pitches in semitones

6. Average inter-onset-interval: average time between two subsequent note onsets

7. Note length vector: which note length occurs how often?

8. Note length transition matrix: calculated in the same way as the pitch class tran-
sition matrix but instead of the pitch class the note length is chosen for calcula-
tion.

The term pitch class refers to the pitch modulo octave size. These features can then
be used to retrieve insights to a single dataset or to compare multiple datasets. The
distributions, mean, and standard deviation of the proposed features can be calculated
and used to analyze a dataset or to compare multiple datasets using distance metrics
for probability density functions (PDFs), e.g. the KL divergence, as proposed by the
authors.

Apart from questions regarding the musical quality of generated excerpts, an-
other important point to consider is the originality of the generated sequences, i.e. if
generated excerpts were just learned to be copied from the training set or if they are
truly new pieces. Some examples of what is possible in the context of originality eval-
uation are provided by Yin et al. They define measures that map two excerpts to [0,1]
according to their similarity. One possible similarity measure is the cardinality score,
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which is based on the intersection of the two pieces to be compared, where each piece
is represented as a set of points. An alternative is the fingerprint measure, which is
computed by hashing triples of notes and perform calculations based on the retrieved
hashes. Apart from the use case of measuring the originality of one set in respect to
another one, they also propose methods to measure the originality of the output of
a music generation algorithm. They even come up with a procedure to incorporate
originality measurement into the model itself.
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Chapter 4: MusicVAE

MusicVAE was developed by Roberts et al. (2018) as a part of Google’s Magenta
project (Magenta developers, 2018). The general structure of MusicVAE is a vari-
ational auto-encoder with LSTMs as encoder and decoder each. Since the authors
addressed several use cases with their model: generating two-bar sequences, 16-bar
sequences, drum patterns, monophonic melodies, and triple-instrument tracks (trios).
Hence, different variants were proposed. Since the main focus of this thesis is the un-
conditioned generation of monophonic symbolic music sequences, the generation of
trios and drum patterns will not be considered, so that only long and short sequences
of monophonic melodies remain. For generating short sequences, the authors created
a baseline model containing a non-hierarchical decoder (called flat model). For gen-
erating long sequences, they created a model containing a hierarchical decoder (called
hierarchical model). They trained and evaluated the baseline model for short sequences
as well as for long sequences. The hierarchical model was only trained and evaluated
for long sequences.

Section 4.1: Data

As a dataset, they collected and pre-processed MIDI data from the web. They con-
ducted experiments with the Lakh MIDI Dataset (LMD) (Raffel, 2016). For pre-
processing, they removed all tracks that had no 4⁄4 time signature, determined the bar
boundaries using the encoded tempo, and quantized the tracks to 16th-notes. This led
to a set of tracks of arbitrary length. To retrieve sequences of a specific length, they
extracted those sequences using a sliding window of two bars (16 bars) with a stride of
one bar. They only added those sequences to their monophonic datasets where max-
imum one note was played at any time and contained one bar of consecutive rests at
most. One element of such a dataset is called excerpt. Since they distinguish between
drum and non-drum sequences, it is implicitly clear that they also sorted out drum
tracks for their melody-sequence dataset. Each excerpt was encoded as a sequence of
events. Each note was encoded as a one-hot vector of length 130. Possible token val-
ues are one of 128 onset values (one for each possible pitch), “offset”, and “rest”. Sets
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of two-bar sequences and 16-bar sequences were created. They retrieved 28 million
two-bar and 19.5 million 16-bar excerpts.

Section 4.2: Architecture

The encoder and decoder of MusicVAE are both LSTM networks that follow the struc-
ture proposed by Gers et al. (1999).

In every case, the encoder is basically a BLSTM that takes a sequence of vectors
as an input to produce a vector of final hidden state. Its initial hidden and cell states are
zero vectors. The encoder of the hierarchical model consists of two BLSTMs stacked
onto each other1. Each BLSTM has a hidden-state size of 2048 per direction. The
flat model is a single-layer BLSTM with a hidden-state size of 2048 per direction 2.
The forward and the backward hidden-state vectors are concatenated to get a vector
hT of size 4056. This is the input of two independent fully-connected layers with
dimension 512 whose outputs are the vectors µ(x) and σ(x) that parameterize the latent
distribution N (µ(x),diag(σ(x)2)). The activation function of the layer that produces
σ(x) is softplus(x) where

softplus(x) = log(1+ exp(x)). (4.1)

Afterwards, the latent vector z is sampled from that distribution by using the reparam-
eterization trick.

The decoder of the baseline model is a three-layer LSTM with a hidden-state
size of 2048. Its initial state is retrieved by feeding the latent vector z through a fully-
connected layer with a dimension of 12288 and tanh(x) as activation function (Ma-
genta developers, 2017a, l. 80). The dimension of the resulting output vector is chosen
so that it can be split into the initial hidden state and cell state vectors of each layer of
the LSTM. The input to the LSTM at the zeroth time step is an initial token concate-
nated with z . To retrieve the output of the decoder, the hidden state of the last LSTM

1The authors stated that they use a “two-layer bidirectional LSTM network” with a hidden-state size
of 2048 per direction as an encoder in the non-baseline model. Looking at the code, it becomes
clear that what they mean is what we name stacked BLSTM networks (Magenta developers, 2017a,
ll. 364–386). In the code, nonetheless, the configuration with stacked BLSTM networks can only be
found in combination with longer sequences. Hence, the stacked BLSTM network is only used in
the non-baseline model.

2In the official notebook (Magenta developers, 2017b), it is stated that for working with short se-
quences, a single-layer BLSTM with a hidden-state size of 2048 per direction was used. This sug-
gests that the baseline model is the configuration found at Magenta developers (2017a, ll. 78–104).
The model with the hierarchical decoder and the stacked BLSTM can then only be the configuration
Magenta developers (2017a, ll. 364–386).
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Figure 4.1: General structure of the hierarchical variant of MusicVAE. Adapted with
changes from Roberts et al. (2018).

layer for every time step is fed through a fully connected layer and softmax(x) as an
activation function, so each output token is basically a categorical distribution over the
possible pitches. During generation, the resulting output of a time step is sampled from
that distribution, concatenated with z, and fed back as input to generate the output of
the next time step.

The hierarchical decoder consists of two subsequent LSTM networks. The first
one is called conductor RNN. It generates a sequence of U embedding vectors from
the latent vector, each representing a sub-sequence of the sequence to be decoded.
In their model, they used a value of U = 16, so each generated embedding vector
corresponds to a single bar3. The conductor RNN is in their case a two-layer LSTM
with a hidden-state size of 1024 per layer. The initial state of the conductor RNN
is retrieved by passing z through a fully-connected layer with a dimension of 4028,
and tanh(x) as an activation function (just as in the flat decoder explained above).
Afterwards, the embedding vectors generated by the conductor RNN are each fed into
a shared fully-connected layer with tanh-function and dimension 512, thus producing
the initial state vectors for the second network, which is called bottom-level decoder

RNN. The bottom-level decoder RNN is a two-layer LSTM with a hidden-state size of
1024 per layer. It produces a sequence of output distributions, just like the flat decoder.
The difference is that it does that for each embedding vector, leading to multiple sub-
sequences. Analogous to the flat decoder, the output token of the bottom-level RNN
of a time step is concatenated with the embedding vector of the current bar and then
fed back as input for the next time step. As a result, there are U sub-sequences that

3The hierarchical model was evaluated only with 16-bar sequences.
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are then concatenated to be the final reconstructed sequence. A schematic showing the
hierarchical model can be seen in Figure 4.1.

One issue in the context of VAEs is that there is the possibility that the decoder
does not learn to incorporate the latent vector into the decoding process. The authors
refer to this phenomenon as posterior collapse problem. They limit the scope of the
hierarchical decoder to make the model learn to use the latent vector for modeling long
term structure. For this reason, the bottom-level decoder RNN was designed not to
pass its state on over multiple sub-sequences, but to use the corresponding embedding
vector to calculate the initial state of a bar. Hence, the only information that is passed
from one bar to another is the last output token of the previous bar.

Section 4.3: Training and Outcomes

Two variants of the flat model, one for two- and one for 16-bar sequences, were trained
and evaluated where the hierarchical model was only trained on 16-bar sequences.
The two-bar model and the 16-bar models were trained with the Adam optimization
algorithm and a learning rate annealed from 10−3 to 10−5 with exponential decay. The
loss function can be written as

L(x, x̂) =CE(x, pθ (X |z))+β max
[
DKL

(
N

(
µ(x),diag

(
σ(x)2)) || N (0, I)

)
, λ

]
(4.2)

with (I. Goodfellow et al., 2016a):

CE(p(X),q(X)) =− ∑
x∈X

p(x) log(q(x)), (4.3)

being the cross-entropy and (MacKay, 2003):

DKL(p(X)||q(X)) = ∑
x∈X

p(x) log
(

p(x)
q(x)

)
. (4.4)

being the KL divergence and z being sampled from the encoder’s output distribution.
The cross-entropy against the ground-truth excerpts is used as reconstruction loss. The
second summand is the KL divergence with the output distribution of the encoder as
the first, and the prior distribution as a second argument. The KL divergence is limited
by a threshold λ , as suggested by Kingma and Welling (2019) and the parameter β is
used to adjust the weight of the KL divergence term as the training proceeds, which is
a technique proposed by Bowman et al. (2016).
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The batch size was 512. The two-bar models were run for 50k steps and the 16-
bar models for 100k steps. For two-bar sequences sequences, the model was trained
with λ = 33.3 and β annealed from 0.0 to 0.2 with an exponential rate of 0.99999.
For 16-bar sequences, the model was trained with λ = 177.4, and β = 0.2.4 For short-
sequence models scheduled sampling with an inverse sigmoid rate of 2000 (S. Bengio
et al., 2015) was used and for long-sequence models, teacher forcing (Williams &
Zipser, 1989). Teacher forcing is a specific technique to train a neural network. It
means that the input token for the generation of x̂t is not x̂t−1, as described for the
generation process, but xt−1. During application, the model then do not use teacher
sequences as input, but its own output tokens. An advantage of this technique is that
the RNN is forced to stay close to the sequence to be reconstructed (Lamb et al., 2016).
A drawback is the discrepancy between the type of input during training and during
application. Scheduled sampling tries to overcome this issue by training the model
using teacher forcing in the early stages of training and substituting teacher tokens
with generated ones later on following a given probability. The inverse sigmoid rate
determines how this probability changes over multiple training steps.

For reconstruction, Roberts et al. encoded and decoded a ground-truth excerpt
x, yielding a reconstructed excerpt x̂. The term accuracy refers to the percentage of
values that are correct, in this case, the percentage of tokens in x̂ that have exactly
the same value at the corresponding time step in x. They found that the flat model
lead to a high accuracy and did not suffer from posterior collapse for short sequences,
but neither was the case for 16-bar sequences. They assumed that the cause of this
is the vanishing influence of the latent vector as the output sequence is generated.The
hierarchical model performed better than the flat model with long sequences in respect
to accuracy and posterior collapse. The authors also conducted experiments with the
16-bar models where they interpolated between two vectors and manipulated attributes
of an excerpt by performing specific operations on its latent vector. It was shown
that the flat model was able to produce latent-space interpolation well and that the
hierarchical model performed even better.

4The values of these parameters were retrieved from Roberts et al. (2018) and Magenta developers
(2017a, ll. 78–104, 364–386).
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Chapter 5: Implementation

The flat model of MusicVAE was re-implemented by using the original paper by
Roberts et al. (2018) and their implementation (Magenta developers, 2017a, ll. 78–
104) as a reference. However, a different dataset was used and the training was also
performed differently. Details will be explained in the following sections.

Section 5.1: Data

As a dataset, the clean MIDI subset of the LMD created by Raffel (2016) was used. To
retrieve the set of excerpts from the set of MIDI track files, a pre-processing pipeline
similar to that of MusicVAE was used, as shown in Algorithm 1. It was assumed that

Algorithm 1: Pre-processing of the clean MIDI dataset
Input: set of files in the clean MIDI dataset

1 preprocessed_dataset := empty list;
2 foreach song in LMD do
3 read song using pretty_midi; /* pretty_midi quantizes the

song */
4 continue with next song, if time signature of song is not 4⁄4;
5 remove all drum tracks;
6 remove empty tracks;
7 foreach track in song do
8 sequences := from track extracted sequences using sliding

window of size of 2 bars and stride of 1 bar;
9 remove polyphonic sequence;

10 remove sequences with rests longer than one bar;
11 append sequences to preprocessed_dataset;
12 end
13 end
14 deduplicate preprocessed_dataset;
15 return preprocessed_dataset;

every song started at a downbeat. However, this is not true in every case. Extending
the pre-processing algorithm is left as an avenue for future experiments. To read and
write MIDI files, as well as to do some processing tasks, multiple libraries were used,
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among others pretty_midi (Raffel & Ellis, 2014) and pypianoroll (Dong et al.,
2018). The quantization policy used to quantify the melodies can be found in their
documentations. Following that pre-processing procedure, 77124 excerpts were re-
trieved for the dataset. Afterwards, it was split following the ratio 80 : 10 : 10 into
training, validation and test sets, respectively. For data augmentation, each note se-
quence was transposed (meaning “shifted” in this context) by a random number of
semitones sampled from a uniform distribution

U(max(−6,min_semitone_shift),min(6,max_semitone_shift)), (5.1)

which covers exactly one octave (12 semitones), if the boundaries are not considered.
The variable min_semitone_shift is the distance of the lowest pitch in an excerpt
to 0 and max_semitone_shift is the distance from the highest pitch in an excerpt
to 1271. This augmentation was applied every time an excerpt was drawn from the
dataset during training. Its goal was to enable the network learning an invariance of
key transpositions. The data are transposed only within one octave because specific
pitch ranges might correspond to specific instruments or roles in a musical piece and
therefore to certain characteristics of a melody that only occur in a limited pitch range.

Each excerpt from the pre-processed set was a two-bar sequence of 16th notes.
Each note was encoded as a one-hot vector of 129 elements, so one excerpt was a
sequence of 32 vectors. A value 1 at index ip ∈ [0,127] represents a note with a pitch
encoded as a MIDI note number with C4 = 60. A value 1 at index 128 represented a
rest. If the sequence contained a sub-sequence of vectors with the same values, this
was interpreted as one long note. Also note that therefore, repeated 16th notes were
essentially merged in the input. No distinction was made between bass voices and
other melodies. An illustration of the representation used can be seen in Figure 5.1.

Section 5.2: Training

The same loss function that was used by Roberts et al. (2018) was chosen for the
re-implementation. The KL divergence was treated as a regularization term. During
training, teacher forcing was applied. This required to shift the ground-truth excerpt
x one time step in the positive time direction, since the input at time step t to retrieve

1Two bugs were found in the code. They were since fixed, but re-training was not performed due
to time constrains. First, if there was an empty token in the sequence, the range of the uniform
distribution was (max(min_semitone_shift,−6),2). The proportion of affected sequences in the
training set is 0.6385. Second, notes in range 125 to 127 might have been rotated to be in the range 0
to 2 during transposition. The proportion of affected sequences in the training set is 0.6503×10−6.
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Figure 5.1: Representation of a note sequence.

x̂t had to be xt−1 and not xt . To make this possible, the representation was extended
to a vector of dimension 130. The chosen start symbol, a one-hot vector with a value
1 at index 129, was then prepended before passing x as an input to the decoder. As
in the work of Roberts et al. (2018), Adam (Kingma & Ba, 2015) was used as the
optimization algorithm with an initial learning rate of 10−3. The batch size used for
training was 64. An L2 weight decay (I. Goodfellow et al., 2016b) was used with a
factor of 10−6.

Roberts et al. scheduled the learning rate using exponential decay. As a
scheduling procedure in this work, the learning rate was halved when the validation
reconstruction loss did not decrease for five epochs. If the validation reconstruction
loss did not decrease after the learning rate was subsequently halved two times, the
learning rate was reset to its initial value. The reason for this reset is explained in
Section 6.1

All models were trained for at least 80 epochs. After the 50th epoch passed,
early stopping (Prechelt, 2012) was applied to stop training as soon as the validation
reconstruction loss has not improved for 30 epochs. Early stopping was not applied
before the 50th epoch, because sudden increases of the reconstruction loss were ob-
served, especially in the early epochs. If early stopping would have been applied in
such early training stages, a stop of training would have been likely. However, a higher
value than 30 would have led to a slower response time of the early stopping, so train-
ing would have been terminated much later than necessary. Based on the observations
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of previous training experiments, the 50th epoch seemed to be a good boundary to start
the early stopping.

The learning rate was reset after two subsequent halvings of the learning rate
without a decrease of the loss. The goal behind this technique was to find minima of
the reconstruction loss with a low KL divergence faster. During the training of different
models, sudden increases of the reconstruction loss followed again by a decrease were
observed. Such events often occurred simultaneously with a sudden increase of the KL
divergence. The following behavior was hypothesized: the model learned a local mini-
mum where the reconstruction loss was low, but the latent space not well-formed. This
was penalized by the KL divergence term. Following gradient updates led to weight
configurations that made the reconstruction loss increase significantly. To enable the
model to quickly find new regions in the loss space where both reconstruction loss and
KL divergence are relatively low, the learning rate was increased after such an event.
This decision, however is based on a hypothesis that is difficult to test, so that will be
left for future work.
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Chapter 6: Experiments and Discussion

Before generating sequences, a grid search over two hyperparameters was performed,
based on which one model was chosen for generation and thus further evaluation. As a
part of that, the quality of the latent space was evaluated. The question if the generated
music has good quality was interpreted as “Is the generated data original?” and “Is the
training data reconstructed well?” where the main focus was on the second question.
These questions were evaluated using objective metrics and a subjective analysis. A
more thorough evaluation, e.g. a larger-scale user study would be an avenue for future
work.

Section 6.1: Evaluation of the Training

Unlike in the training of MusicVAE, here, the parameters of the KL divergence term β

and λ were set to constant values and not annealed over steps. A grid search was per-
formed to find good values for them. The values that were tried are listed in Table 6.1.
For the resulting curves of each model, such as learning rate or reconstruction loss, see
Appendix A.

When training Model 3, the average KL divergence shown in Figure A.3e was
below its threshold λ = 333 all the time. This led to the KL divergence not being

Table 6.1: Values of hyperparameters that have been chosen for the grid search.

Model number β λ

1 0.01 3.33
2 0.01 33.3
3 0.01 333
4 0.10 3.33
5 0.10 33.3
6 0.10 333
7 1.00 3.33
8 1.00 33.3
9 1.00 333
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(a) Model 1:
β = 0.01, λ = 3.33

(b) Model 7:
β = 1.00, λ = 3.33

(c) Model 8:
β = 1.00, λ = 33.3

Figure 6.1: Samples from the encoder’s output distribution. The dimensionality was
reduced from 512 to 50 using principal component analysis (PCA) (Gew-
ers et al., 2021) and afterwards, from 50 to 2 using ttt-distributed stochastic
neighbor embedding (t-SNE) (van der Maaten & Hinton, 2008). The algo-
rithms were implemented using Scikit-learn (Pedregosa et al., 2011) with
standard parameters. The reason, why both procedures were applied sub-
sequently was a suggestion in the Scikit-learn documentation.

penalized at all. The value λ = 333 was therefore considered as too high in general
and Models 3, 6, and 9 were not examined to a larger extent.

The Models 1, 7, and 8 were selected for further evaluation. Model 1 had the
lowest reconstruction loss (see Figure A.2), but a higher KL divergence than other
models (see Figure A.3). Model 7 has the lowest KL divergence, but a higher recon-
struction loss than other models. Model 8 had the third lowest reconstruction loss and
the second lowest KL divergence, so it is the model with the lowest reconstruction loss
where both reconstruction loss and KL divergence are relatively low.

In all of the trained models, the training loss was below the validation loss.
This implies that they were overfit. Overfit models perform well on the excerpts they
were trained with, but when it comes to generalization, they are worse than in training
(I. Goodfellow et al., 2016b). To avoid this effect, different methods could be applied,
e.g. fine tuning of the weight decay parameter, which will be left for future work.

To evaluate the quality of the latent space, one could conduct interpolation
experiments and evaluate the interpolated excerpts, as performed by Roberts et al.

Another option is to directly measure or visualize features of the resulting latent space,
which was done here. From the test dataset, 128 samples were drawn randomly and
fed into the encoder, yielding a set of Gaussians. From each Gaussian, 20 samples
were drawn. The result was a cloud of 2560 points in a 512-dimensional space. In
Figure 6.1 these points were visualized for each of the Models 1, 7, and 8. However,
these plots cannot be used for evaluation, because the high amount of information that
probably was lost during the dimensionality reduction process.
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Figure 6.2: The log-likelihood of a GMM with a varying number of Gaussians fitted to
the latent spaces of Models 1, 7, and 8.

To be able to make quantitative statements, multiple gaussian mixture models
(GMMs) (Reynolds & Jain, 2009) were fitted onto the same set of 512-dimensional
points using Scikit-learn (Pedregosa et al., 2011). Each of those GMMs consisted of a
different number of Gaussians. The number of Gaussians was a power of two, ranging
from 20 = 1 to 27 = 128. Each Gaussian was assumed to have a diagonal covariance
matrix. For each GMM, the log-likelihood of each point to be sampled from that GMM
was calculated and the log-likelihoods of all points were summed up to retrieve the log-
likelihood of the GMM. In that way, a function between the number of Gaussians in
the GMM and its log-likelihood was retrieved. This procedure was repeated for each
of the Models 1, 7, and 8. The log-likelihood curves can be seen in Figure 6.2. First, it
can be seen that in all cases, the likelihood is higher the more Gaussians there are in the
GMM. The reason for that is that the points are sampled from 128 different Gaussians.
Second, a GMM with 128 Gaussians can approximate the distribution of these data
better than a single Gaussian distribution, so the log-likelihood raises with the number
of Gaussians. Third, the curve of Model 1 is much lower for 1 Gaussian in the GMM
than the remaining curves. Only with 64 to 128 Gaussians the log-likelihood for Model
1 reaches the level of the other log-likelihood curves. A reason for this might be that the
latent space of Model 1 is less similar to a Gaussian distribution than the latent space
of the Models 7 and 8. In other words, Model 1 has a latent space containing more
holes than the latent spaces of Models 7 and 8. The log-likelihood curve for Model 8 is
slightly lower than that of Model 7. The latent space of Model 1 was not formed well,
compared to Models 7 and 8. Therefore, Model 1 was ruled out for further evaluation,
leaving only Models 7 and 8.
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To choose one of the remaining models for further evaluation, several se-
quences were generated. A subjective analysis revealed that Model 8 produced a higher
proportion of sequences that sound pleasing. For this reason, Model 8 was examined
in more detail, where only that weight configuration has been looked at that had the
lowest validation reconstruction loss.

Section 6.2: Quality of the Generated Excerpts

To answer the question if the training data is reconstructed well, several evaluation
measures were be selected and calculated for the training set, a set of generated ex-
cerpts (called generated set), and a set of random sequences (called random set). The
excerpts retrieved from the model were produced by sampling latent vectors from a
512-dimensional multivariate normal distribution with µ = 0 and σ = 1.2802 and
passing those to the decoder. These values were retrieved by fitting a single spher-
ical Gaussian onto the point cloud mentioned in Section 6.1, where the GMM from
Scikit-learn (Pedregosa et al., 2011) was used. Each sequence in the random set was
generated by sampling each one-hot index uniformly and converting them to a one-hot
vector. The goal was to see if the model is able to reconstruct rhythmic and melodic
features.

For the evaluation of the originality of the generated music a rather simple met-
ric was used: for each excerpt it was checked whether it was an exact copy of an
excerpt from the training dataset. There were 106 duplicate excerpts in the generated
dataset itself, which is a proportion of 0.0135. After de-duplication of the generated
dataset, it contained 35 excerpts that were also in the training dataset, which is a pro-
portion of 0.0045. The training dataset did not contain any duplicates. More thorough
evaluations, as described in Section 3.5, are left for future work.

Section 6.2.1: Rhythmic Features

Three rhythmic features were selected for comparison: the proportion of metrical posi-
tions with an onset and the distribution of note lengths, both calculated over the whole
set. Furthermore, the distribution of the average note length per set will be investigated.

Figure 6.3a shows the proportion of metrical positions of each metrical level
that contain an onset. It can be seen that the random set had many onsets at almost
every metrical position, regardless of the level. This indicates that the random note
sequences contained mostly 16th notes. Looking at the test set and the generated set, it
can be seen that on downbeats the proportion of onsets is higher than at other metrical
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(a) Proportion of metrical positions with an onset for different met-
rical levels.

(b) Proportion of onsets that are on a specific metrical level, but
not on the previous metrical level.

Figure 6.3: Onset proportions.

levels. The generated set shows a similar trend as the test set. However, the propor-
tions are lower. In contrast to the test set, in the generated set the proportions of 16th

notes with an onset is slightly higher than the proportion of eighth notes with an onset.
This suggests that there were more onsets on uneven 16th notes than on even ones.
This property is illustrated by the generated excerpt shown in Figure 6.4. Figure 6.3b,
shows the proportions of onsets that are on a specific metrical level, but not on its pre-
vious one. From that figure, it can even be seen that this proportion increases over the
metrical levels, where the curve of the test set decreases. The property described for
16th notes thus applies to the other metrical levels too.
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(a)

(b)

Figure 6.4: Generated sequence where most of the onsets are on uneven 16th notes.
Figure 6.4a and Figure 6.4b both show the same sequence, first as piano
roll and second as score.
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(a) Bar plot of how many notes in a set have which note length.

(b) Distribution of the average note length of a sequence per set.

Figure 6.5: Note length.
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Figure 6.6: Plot of how many samples in each set have what pitch range.

Figure 6.5a shows the distribution of note length over all notes in a set. It can
be seen that the number of notes decreases smoothly the higher of the duration of the
notes becomes. The test set exhibits peaks at 16th, eighth, quarter, half, and whole
notes (the corresponding x-axis labels are 1, 2, 4, 8, and 16). The generated set, in
contrast, shows only the smooth decrease over increase of note duration. The peaks
were not copied, nor was the low number of notes with a duration of three 16th notes
present. A possible reason is that the training dataset was not big enough for the model
to learn these specific features, especially because the number of longer notes is very
small compared to the number of overall notes in the set.

Figure 6.5b shows the distribution of the average note length of a sequence. In
the graph of the test set there are peaks around average note lengths of approximately
four, eight, eleven, and 16 16th notes. The maxima in the distribution of the test set
correspond to sequences with few longer notes taking most of the space and maybe
some shorter ones before or afterwards. The distribution of the generated set has a
higher peak at approximately four 16th notes than the test set. This suggests that the
generated set contained a higher amount of sequences with mostly short notes.

Section 6.2.2: Melodic Features

To compare melodic properties, two features were be taken into account: the pitch
range and a measure for diatonicity. For each excerpt in a set, the pitch range was
calculated, leading to a list of scalar values, each representing the pitch range of an
excerpt. The distribution of these pitch ranges are shown in Figure 6.6 for each set.
It can be seen that almost all excerpts in the Test set had a pitch range in the interval
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(a)

(b)

Figure 6.7: Generated sequence that starts with notes that lie significantly outside
a two-octave pitch range and then settles down to a more conservative
melody. Figure 6.7a and Figure 6.7b both show the same sequence, first
as piano roll and second as score.
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(a)

(b)

Figure 6.8: Generated sequence that starts with notes that lie significantly outside
a two-octave pitch range and then settles down to a more conservative
melody. Figure 6.8a and Figure 6.8b both show the same sequence, first
as piano roll and second as score.
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(a)

(b)

Figure 6.9: Generated sequence that contains a note in the middle of it that lies signif-
icantly outside a two-octave pitch range. Figure 6.9a and Figure 6.9b both
show the same sequence, first as piano roll and second as score.

Figure 6.10: Plot of which proportion of excerpts had which diatonicity value. The
diatonicity value was computed by calculating the vector products of dif-
ferent binary pitch class vector templates (one for each major key) and the
pitch class vector of the excerpt and taking the maximum of those vector
products.



46 6 Experiments and Discussion

(a)

(b)

Figure 6.11: Generated sequence that is estimated to be in key F♯ with a score of
0.9310 containing two notes not in that key: the 29th and the 30th. Fig-
ure 6.11a and Figure 6.11b both show the same sequence, first as piano
roll and second as score.
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[0,23], so the pitches of most songs were placed within one or two octaves. It can be
seen that the majority of generated excerpts had high pitch range, similar to the random
set. Reasons for such high pitch ranges in the generated set are sequences that start
with notes that definitely exceed the pitch range of two octaves, but eventually settle
to a more conservative range. Such sequences are shown in Figure 6.7 and Figure 6.8.
There were also excerpts that contained notes in the middle of the sequence, which lie
significantly outside a two-octave range, such as the sequence shown in Figure 6.9.

To retrieve a measure for diatonicity, a pitch-class vector was calculated for
each excerpt. The pitch-class vector contained for each pitch class the number of non-
rest tokens that correspond to that specific pitch class, normalized by the number of
non-rest tokens in a sequence. Next, a key-estimation vector was to be calculated.
To achieve that, a binary pitch class template for major scales was defined, containing
twelve elements, one for each pitch class. Let the first index of the template correspond
to a root note of a scale. The template was created by setting the value to one at those
indices that correspond to a semitone that is in the major scale of the root note. The
retrieved template then applied to an arbitrary root note:

binary major pitch class template = (1,0,1,0,1,1,0,1,0,1,0,1). (6.1)

The key estimation vector was retrieved by calculating the dot product of the consid-
ered piece’s pitch class vector and every possible rotation of the pitch class template.
The resulting key estimation vector was a list of scores, determining which major key
fitted how well to the piece. Since every major key has a relative natural minor key (the
relative minor key of C major is A minor), which contains the same pitches as its rela-
tive major key, this procedure also included all possible natural minor keys implicitly.
For each piece in a set, the maximum value of that key estimation vector was taken for
evaluation and called diatonicity value. These values can be seen in Figure 6.10.. From
the plot it can be seen that the random set had rather low diatonicity values, where the
generated set and the test set contained most excerpts with a diatonicity value of 1.
Still, the distribution of the generated set looks not as steep as that of the test set, there
were more excerpts with lower diatonicity, than in the test set1. The reason for that
might be that the generated set contained excerpts where most notes sound pleasant
and diatonic, but some notes did not fit to the rest. One typical example is shown in

1The reason why the distributions are rippled is that without normalizing the pitch class vector by the
number of non-rest notes, which can be different for multiple excerpts, the diatonicity score takes
distinct values. With the normalization, however, the number of possible distinct values is much
higher, hence violin plots were used for visualization.
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Figure 6.11. It had a maximum key score of 0.9310 for the key F♯ and it contained
two tokens that are out of key: the 29th and the 30th.

Section 6.2.3: Qualitative Evaluation

For qualitative evaluation, several excerpts were listened to manually. Many excerpts
showed sudden changes in the scale or big jumps in the pitch that exceed pleasant
sounding pitch ranges (see Section 6.2.2). Rhythmic differences were not noticed that
much from a subjective point of view. The reason might be that the excerpts were only
monophonic without having any group of rhythmic voices playing along. A sequence
shifted by some steps thus sounding more syncopated would not have been noticed.
Apart from these non-musical properties that distinguished the generated set from the
test set, some good sounding excerpts were generated too. Ignoring the few odd notes
at the beginning or the end, the sequences shown in Figure 6.11 and Figure 6.7 sounded
pleasant and were coherent in their theme throughout the two bars. Furthermore, cheer-
ful chimes (a few short notes followed by a final long note, all with a relatively high
pitch) were generated, such as Figure 6.12 and Figure 6.13 that could easily be imag-
ined becoming a jingle for a spot for e.g. a private television channel. Listening to
approximately fifty excerpts, around five of those chimes were found. Rhythmically
interesting are the sequences shown in Figure 6.14 and Figure 6.15. Especially the
second one is a pleasant sounding bass voice that one could imagine appearing in a
progressive rock song. Such rhythmical interesting excerpts were found around three
times in approximately fifty excerpts.
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(a)

(b)

Figure 6.12: Generated sequence that is an example for a chime. Figure 6.12a and
Figure 6.12b both show the same sequence, first as piano roll and second
as score.

(a)

(b)

Figure 6.13: Generated sequence that is an example for a chime. Figure 6.13a and
Figure 6.13b both show the same sequence, first as piano roll and second
as score.
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(a)

(b)

Figure 6.14: Generated sequence that shows a rhythmically interesting melody. Fig-
ure 6.14a and Figure 6.14b both show the same sequence, first as piano
roll and second as score.
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(a)

(b)

Figure 6.15: Generated sequence that shows a rhythmically interesting bass voice. Fig-
ure 6.15a and Figure 6.15b both show the same sequence, first as piano
roll and second as score.
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Chapter 7: Conclusion and Future Work

In this thesis, the task of unconditioned generation of symbolic monophonic music
was considered. The state of the art to this task was investigated, including commonly
used music representations and evaluation protocols. A selected variant of the music
generation system MusicVAE (Roberts et al., 2018) was re-implemented to generate
a set of two-bar monophonic note sequences. The quality of these excerpts was then
discussed using objective metrics.

The re-implemented model was able to reduce its reconstruction loss during
training with several hyper-parameter configurations. However, in every case the
model overfit. To choose one of the trained models for further evaluation, the latent
spaces of different models were compared and a subjective analysis on the quality of
the models’ output was performed. That model that showed a good trade-off between
qualities of latent space and reconstruction was considered for the following analysis.

With that model, a set of generated sequences was created and compared to the
test set for evaluating the reconstruction quality and to the training set for evaluating
the originality. It was found that the model did not just learn to copy excerpts from the
test set to a noticeable amount, but generated new ones. The generated excerpts were
more similar to those in the test set than randomly generated sequences. However, there
were some differences: the model struggled to reproduce the rhythmic structure of the
training data. In particular, it had to many notes with a lower duration and characteristic
peaks in the note duration distribution were not recognized. There were more onsets
on uneven 16th notes in the generated set than in the test set. Considering melodic
features, the generated sequences contained erroneous sub-sequences. In particular,
there were single non-diatonic notes relative to the majority of notes in the sequence
and sudden note jumps that exceeded a pleasant pitch range. However, except those
odd sub-sequences, most of the notes in a sequence were diatonic and the model was
capable of producing interesting rhythms, chimes and other melodies.

For further research, the dataset creation procedure can be improved. First, a
larger corpus of MIDI files (such as the full LMD) could be collected to retrieve a
larger set of excerpts for training and it can be evaluated if that solves the problem
of the model not copying characteristic rhythmical features. The extraction of the
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sequences can be extended to detect the downbeats of songs that do not have their
downbeat at the first time step. After excerpt creation, a thorough analysis of the
retrieved dataset can be beneficial to make sure that different types of excerpts have a
similar proportion. Such a type could be a kind of voice or a class of melodies, e.g. bass
voice, lead melody, chime, etc. Alternative representations of symbolic music might
be considered, e.g. where a note is encoded with an onset token and some information
about the duration. Furthermore, the representation could include an encoding where
the distance of two notes of other features than only the pitch, such as the proximity
on the circle of fifths, as in the work of Mozer (1994). To reduce possible overfitting,
regularization techniques, such as weight decay and dropout might be applied and
the corresponding hyper-parameters tuned. The annealing of the hyper-parameter β

of the KL divergence term, as performed by Roberts et al. (2018), could be applied,
scheduled sampling could be tried instead of teacher forcing, and a more thorough
hyper-parameter search could be conducted. Sudden jumps in the loss curve were
observed during training, but they were not investigated thoroughly. Future work could
include an analysis of the reasons for such events. That knowledge could then be used
to improve the training procedure.

In this thesis, only the baseline from the work of Roberts et al. (2018) was
re-implemented. This could also be done for their hierarchical model to be able to
generate longer sequences incorporating a coherent structure over a higher amount of
time steps. As a next step, the generation scheme of the model could be extended to
generate polyphonic music directly, not only multiple streams of monophonic voices.
The performance of model variants with different sizes of the latent space can also
be investigated, as well as ways to condition the latent space. One possibility for
that would be to learn a mapping from text labels to excerpts using an additional loss
function to urge the learned latent space to be close to the text label’s embedding.
Other evaluation procedures may be performed, such as larger-scale listening tests,
experiments involving more thorough objective metrics, as listed by Yang and Lerch
(2020) and a more sophisticated originality report, as proposed by Yin et al. (2023).
Further possibilities to evaluate the quality of the latent space could also be an avenue
for further research.
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Appendix A: Training

(a) (b)

(c)

Figure A.1: Learning rate curves of the models trained during the grid search in Chap-
ter 6.
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(a) (b)

(c) (d)

(e) (f)

Figure A.2: Validation reconstruction loss (left) and training reconstruction loss (right)
of the models trained during the grid search in Chapter 6.
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(a) (b)

(c) (d)

(e) (f)

Figure A.3: Mean KL divergence per batch (left) and limited and scaled KL divergence
(right) of the models trained during the grid search in Chapter 6.
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