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Music generation could be supportive for composition or
live performances.
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(1) review state of the art

(2) re-implement MusicVAE

(3) evaluate quality of generated excerpts
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(2) Picture retrieved and changed July 17, 2023 from https://colah.github.io/posts/2015-08-Understanding-L.STMs/img/RNN-unrolled.png
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(4) Picture retrieved and changed July 17, 2023 from https://magenta.tensorflow.org/assets/music_vae/architecture.png
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(1) Picture retrieved July 8, 2023 from
https://colah.github.io/posts/2015-08-Understanding-L.STMs/img/RINN-rolled.png
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L(zx) = rec. loss + 8 max| D, A |

* B and A chosen after * weight decay
gl"ld search — Lo regularization with
- B=1:1=333 weight 1076
* optimizer * LR scheduling
~ Adam — customized variant of
- learning rate (LR) =103 RedUCeLRonPlateaU

* batch size = 64 * early stopping was used
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Note onsets can be assigned to a metrical level.
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In the generated set there are more onsets on uneven 16"
notes than on even ones.
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Peaks in the note length were not copied.
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There are high pitch jumps in the generated excerpts.
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Generated excerpts are mostly diatonic, but there are odd
notes.
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* state of the art has been reviewed

* re-implementation
— MusicVAE’s flat variant implemented

— excerpts generated

* generated excerpts were evaluated




\

[ ] [ J [ J m
CO“C]“S]O“: Flndlngs TECHNISCHE UNIVERSITAT % FraunhoTDeMl;

ILMENAU

* more onsets on uneven 16™ notes
* single non-diatonic notes & pitch jumps

* mostly musically coherent & pleasant-
sounding
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* recreate training dataset
* adjust training procedure

* extend model

— hierarcical, polyphonic, conditioned
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Thank you!
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Picture retrieved July 8, 2023 from
https://colah.github.io/posts/2015-08-Understanding-L.STMs/img/RNN-rolled.png
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Standart RNNs have some drawbacks.

Picture retrieved July 8, 2023 from
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In the generated set there are more onsets on uneven 16™
notes than on even ones.
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Music generation could be supportive for composition or
live performances.

Picture retrieved July 16, 2023 from
https://pixabay.com/photos/music-producer-studio-actor-audio-4507819/
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 What is music generation?
 why do we care?
 create music for creative productions
e support during composition or live performances
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symbolic vs. waveform
monophonic vs. polyphonic
conditioned vs. unconditioned
Western music
objectives
e summarize state of the art
* re-implement MusicVAE
* training data: two-bar monophonic sequences
* generate excerpts and discuss their quality
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(1) review state of the art

(2) re-implement MusicVAE

(3) evaluate quality of generated excerpts
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(1) Picture retrieved July 17, 2023 from https:/en.wikipedia.org/wiki/Markov_chain#/media/File:Markovkate_01.svg
(2) Picture retrieved and changed July 17, 2023 from https://colah.github.io/posts/2015-08-Understanding-L.STMs/img/RNN-unrolled.png
(3) Picture retrieved and changed July 17, 2023 from https://clinicadl.readthedocs.io/en/latest/images/transfer_learning.png

(4) Picture retrieved and changed July 17, 2023 from https://magenta.tensorflow.org/assets/music_vae/architecture.png
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approaches
* historically: llliac Suite, use markov models
* just RNNs, LSTMs
* generate autoregressively
* difference to Markov models: MM looks back limited amount of time,
RNNSs potentially unlimited time

* MidiNet
* generate pianoroll using CNN
* MusicVAE

* hierarchical
* TransformerVAE
» leads to similar reconstruction acc.
evaluation procedures
* quality?
* listening study
* objective measures
* originality?
* how many notes are equal (regardless of transp.)
* deficit: only compared to other DL appr.
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e data and representation
 there are symbols for each pitch plus a symbol for
“no pitch”
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(1) Picture retrieved July 8, 2023 from
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-rolled.png
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general structure of MusicVAE

 music - encoder - z with special requirements -
decoder — music

music is encoded as sequence of vectors.

« each vector represents one 16" note

first: RNNs, then VAEs
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L(x) = rec. loss + D ( N(u,diag(c?)) || N(0,1))

10/30

'X—)H,G—)diSt—)ZﬁXhat
* reconstruction loss

* Cross entropy
KL divergence
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Hierarchical
 Encoder:
* two stacked BLSTMs
 Decoder:
* hierarchical
e conductor LSTM
* One vector per bar
* bottom-level LSTM
e bar from conductor vector

Elat
 Encoder:

* simple BLSTM
 Decoder:

* multi-layer LSTM
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L(z) = rec. loss + 8 max| Dir, A ]

* B and A chosen after * weight decay
grid search — L regularization with
- B=1;1=333 weight 1076
* optimizer * LR scheduling
~ Adam - customized variant of
- learning rate (LR) =1073 ReduceLRonPlateau
* batch size = 64 * early stopping was used

12/30

* loss function
* [3, A constant
* training techniques

« Adam, 1e-3
e batch size 64
e L2 wd: 1le-6

customized ReduceLROnPIlateau
early stopping
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Note onsets can be assigned to a metrical level.

14/ 30




\

Results: Rhythmic Features remscns onsn 24 Fraunhofer

ILMENAU 1DMT

=
=)
!

I Test set
I Generated set

o
[ee]

o
o

o
IN

Proportion of positions with an onset

o o
o N
X X

®

9,

o©

-

®

rag

Metrical level

In the generated set there are more onsets on uneven 16™
notes than on even ones.
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e onset proportion

* note length, avg note length
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e onset proportion

* note length, avg note length
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Pitch ranges

There are high pitch jumps in the generated excerpts.
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 pitch range
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C-lo

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time step in 16th notes

Sequence Nr. 24 (Figure 6.7)
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Dataset

Generated excerpts are mostly diatonic, but there are odd
notes.
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 diatonicity
 how much it stays in one key
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Time step in 16th notes

Sequence Nr. 13 (Figure 6.11)
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Results:
Qualitative Evaluation
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* high pitch jumps
* rhythmic differences where not noticed
* ignoring few odd notes, still pleasant and coherent
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Time step in 16th notes

Sequence Nr. 24 (Figure 6.7)

24/30




I : h =
Results: Qualitative Evaluation | reciscie uwversms 24 Fraunhofer
C8 T T .
o=
=

Pitch

CGO

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time step in 16th notes

Sequence Nr. 50 (Figure 6.12)
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 chimes
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Sequence Nr. 34 (Figure 6.15)
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* rhythmically interesting
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* state of the art has been reviewed

* re-implementation
— MusicVAE’s flat variant implemented

- excerpts generated

* generated excerpts were evaluated
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 What has been done

MusicVAE re-implemented, excerpts generated &
evaluated

generated excerpts similar to training data, but still
differences

apart from these, generated melodies sounded
pleasant

 Future work

larger dataset, analysis of it

regularization technigues to reduce overfitting

sudden jumps in the loss - investigate reason and
Improve training

Improve hierarchical model

condition the latent space -

evaluate latent space in a different way
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* more onsets on uneven 16" notes
* single non-diatonic notes & pitch jumps

* mostly musically coherent & pleasant-
sounding
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* What has been done
* MusicVAE re-implemented, excerpts generated &
evaluated
e generated excerpts similar to training data, but still
differences
e apart from these, generated melodies sounded
pleasant
e Future work
* larger dataset, analysis of it
regularization technigues to reduce overfitting
sudden jumps in the loss - investigate reason and
Improve training
Improve hierarchical model
condition the latent space -
evaluate latent space in a different way
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* recreate training dataset
* adjust training procedure

* extend model

— hierarcical, polyphonic, conditioned
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e recreate training dataset
- larger dataset

- analyse training dataset more thoroughly
before training

— consider alternative representations

e adjust training procedure
- tune weight decay
— scheduled sampling & annealing of 8
— more thorough hyperparameter search

- find out reason for jJumps in the loss curve &
adjust training accordingly

e extend model

- implement hierarchical model
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Thank you!
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Recurrent Neural Networks
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RNNs are neural networks with feedback.

?
L A

Picture retrieved July 8, 2023 from
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-rolled.png
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 RNNSs can be used to process time-series data
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RNNs can be represented unrolled.

[—_> A :] = A A A
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png

Picture retrieved and changed July 8, 2023 from
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hy = tanh(W;xy + b; + Wrhi—1 + bp)
Standart RNNs have some drawbacks.

Picture retrieved July 8, 2023 from
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-SimpleRNN.png
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e problems:
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Picture retrieved and changed July 8, 2023 from
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-chain.png
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e LSTMs
 forget gate
* input gate
e output gate
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Time step in 16th notes

Sequence Nr. 30 (Figure 6.4)
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Sequence Nr. 24 (Figure 6.7)
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Time step in 16th notes

Sequence Nr. 13 (Figure 6.11)
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Time step in 16th notes

Sequence Nr. 50 (Figure 6.12)
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 chimes
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Time step in 16th notes

Sequence Nr. 34 (Figure 6.15)

* rhythmically interesting
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Evaluation
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Metrical level
In the generated set there are more onsets on uneven 16"
notes than on even ones.

44 /30



\

w ZZ Fraunhofer

TECHNISCHE UNIVERSITAT
ILMENAU IDMT

Latent Space
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well-formed
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* Figure: desirable
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Probability density

not well-formed
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* Figure: undesirable
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The structure of the latent spaces of Models
1, 7, and 8 was examined.
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 grid search

 structure of latent space
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