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Introduction

Music generation could be supportive for composition or 
live performances.
Picture retrieved July 16, 2023 from
https://pixabay.com/photos/music-producer-studio-actor-audio-4507819/

https://pixabay.com/photos/music-producer-studio-actor-audio-4507819/
https://pixabay.com/photos/music-producer-studio-actor-audio-4507819/
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Introduction

unconditioned or conditioned

or

or
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Introduction: Objectives

(1) review state of the art

(2) re-implement MusicVAE

(3) evaluate quality of generated excerpts
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State of the Art
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State of the Art

(1) Picture retrieved July 17, 2023 from https://en.wikipedia.org/wiki/Markov_chain#/media/File:Markovkate_01.svg

(2) Picture retrieved and changed July 17, 2023 from https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png

(3) Picture retrieved and changed July 17, 2023 from https://clinicadl.readthedocs.io/en/latest/images/transfer_learning.png

(4) Picture retrieved and changed July 17, 2023 from https://magenta.tensorflow.org/assets/music_vae/architecture.png
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https://en.wikipedia.org/wiki/Markov_chain#/media/File:Markovkate_01.svg
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png
https://clinicadl.readthedocs.io/en/latest/images/transfer_learning.png
https://magenta.tensorflow.org/assets/music_vae/architecture.png
https://en.wikipedia.org/wiki/Markov_chain#/media/File:Markovkate_01.svg
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png
https://clinicadl.readthedocs.io/en/latest/images/transfer_learning.png
https://magenta.tensorflow.org/assets/music_vae/architecture.png
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MusicVAE
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Representation
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MusicVAE

Train a model to 
generate music 
from a random 
vector.
(1) Picture retrieved July 8, 2023 from 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-rolled.png

(1)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-rolled.png
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-rolled.png
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MusicVAE: VAEs
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MusicVAE
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Implementation: Training

● β and λ chosen after 
grid search
– β = 1; λ = 33.3

● optimizer
– Adam
– learning rate (LR) = 10 ³⁻

● batch size = 64

● weight decay
– L2 regularization with 

weight 10 ⁶⁻
● LR scheduling

– customized variant of 
ReduceLROnPlateau

● early stopping was used
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Results:
Rhythmic Features
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Results: Rhythmic Features

Note onsets can be assigned to a metrical level.

start endtime
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Results: Rhythmic Features

In the generated set there are more onsets on uneven 16th 
notes than on even ones.
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Results: Rhythmic Features

Sequence Nr. 30 (Figure 6.4)
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Results: Rhythmic Features

Peaks in the note length were not copied.
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Results:
Melodic Features
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Results: Melodic Features

There are high pitch jumps in the generated excerpts.
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Results: Melodic Features

Sequence Nr. 24 (Figure 6.7)
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Results: Melodic Features

Generated excerpts are mostly diatonic, but there are odd 
notes.
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Results: Melodic Features

Sequence Nr. 13 (Figure 6.11)
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Results:
Qualitative Evaluation
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Results: Melodic Features

Sequence Nr. 24 (Figure 6.7)
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Results: Qualitative Evaluation

Sequence Nr. 50 (Figure 6.12)
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Results: Qualitative Evaluation

Sequence Nr. 34 (Figure 6.15)
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Conclusion
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Conclusion: Objectives

● state of the art has been reviewed
● re-implementation

– MusicVAE’s flat variant implemented
– excerpts generated

● generated excerpts were evaluated
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Conclusion: Findings

● more onsets on uneven 16th notes
● single non-diatonic notes & pitch jumps
● mostly musically coherent & pleasant-

sounding
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Conclusion: Future Work

● recreate training dataset
● adjust training procedure
● extend model

– hierarcical, polyphonic, conditioned



Thank you!
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Recurrent Neural Networks
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MusicVAE: RNNs

RNNs are neural networks with feedback.

Picture retrieved July 8, 2023 from 
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-rolled.png

https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-rolled.png
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-rolled.png
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MusicVAE: RNNs

RNNs can be represented unrolled.

Picture retrieved and changed July 8, 2023 from 
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png

https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png
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MusicVAE: RNNs

Standart RNNs have some drawbacks.

Picture retrieved July 8, 2023 from 
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-SimpleRNN.png

https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-SimpleRNN.png
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-SimpleRNN.png
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MusicVAE: RNNs

Picture retrieved and changed July 8, 2023 from 
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-chain.png
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-chain.png
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-chain.png
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Generated Excerpts
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Generated Excerpts

Sequence Nr. 30 (Figure 6.4)
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Generated Excerpts

Sequence Nr. 24 (Figure 6.7)
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Results: Melodic Features

Sequence Nr. 13 (Figure 6.11)
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Generated Excerpts

Sequence Nr. 50 (Figure 6.12)
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Generated Excerpts

Sequence Nr. 34 (Figure 6.15)
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Evaluation
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Results: Rhythmic Features

In the generated set there are more onsets on uneven 16th 
notes than on even ones.
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Latent Space
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MusicVAE: VAEs

well-formed
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MusicVAE: VAEs

not well-formed
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Results: Training

The structure of the latent spaces of Models 
1, 7, and 8 was examined.
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Introduction

Music generation could be supportive for composition or 
live performances.
Picture retrieved July 16, 2023 from
https://pixabay.com/photos/music-producer-studio-actor-audio-4507819/

● What is music generation?
● why do we care?

● create music for creative productions
● support during composition or live performances
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Introduction

unconditioned or conditioned

or

or

● symbolic vs. waveform
● monophonic vs. polyphonic
● conditioned vs. unconditioned
● Western music
● objectives

● summarize state of the art
● re-implement MusicVAE

● training data: two-bar monophonic sequences
● generate excerpts and discuss their quality
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Introduction: Objectives

(1) review state of the art

(2) re-implement MusicVAE

(3) evaluate quality of generated excerpts
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State of the Art
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State of the Art

(1) Picture retrieved July 17, 2023 from https://en.wikipedia.org/wiki/Markov_chain#/media/File:Markovkate_01.svg

(2) Picture retrieved and changed July 17, 2023 from https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png

(3) Picture retrieved and changed July 17, 2023 from https://clinicadl.readthedocs.io/en/latest/images/transfer_learning.png

(4) Picture retrieved and changed July 17, 2023 from https://magenta.tensorflow.org/assets/music_vae/architecture.png
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● approaches
● historically: Illiac Suite, use markov models
● just RNNs, LSTMs

● generate autoregressively
● difference to Markov models: MM looks back limited amount of time, 

RNNs potentially unlimited time
● MidiNet

● generate pianoroll using CNN
● MusicVAE

● hierarchical
● TransformerVAE

● leads to similar reconstruction acc.
● evaluation procedures

● quality?
● listening study
● objective measures

● originality?
● how many notes are equal (regardless of transp.)

● deficit: only compared to other DL appr.
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MusicVAE
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Representation

● data and representation
● there are symbols for each pitch plus a symbol for 

“no pitch”
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MusicVAE

Train a model to 
generate music 
from a random 
vector.
(1) Picture retrieved July 8, 2023 from 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-rolled.png

(1)

● general structure of MusicVAE
● music → encoder → z with special requirements → 

decoder → music
● music is encoded as sequence of vectors.

● each vector represents one 16th note
● first: RNNs, then VAEs



  

10 / 30

MusicVAE: VAEs

● x → μ, σ → dist → z → xhat
● reconstruction loss

● cross entropy
● KL divergence
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MusicVAE
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Hierarchical
● Encoder:

● two stacked BLSTMs
● Decoder:

● hierarchical
● conductor LSTM

● one vector per bar
● bottom-level LSTM

● bar from conductor vector

Flat
● Encoder:

● simple BLSTM
● Decoder:

● multi-layer LSTM
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Implementation: Training

● β and λ chosen after 
grid search
– β = 1; λ = 33.3

● optimizer
– Adam
– learning rate (LR) = 10 ³⁻

● batch size = 64

● weight decay
– L2 regularization with 

weight 10 ⁶⁻
● LR scheduling

– customized variant of 
ReduceLROnPlateau

● early stopping was used

● loss function
● β, λ constant

● training techniques
● Adam, 1e-3
● batch size 64
● L2 wd: 1e-6
● customized ReduceLROnPlateau
● early stopping
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Results:
Rhythmic Features
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Results: Rhythmic Features

Note onsets can be assigned to a metrical level.

start endtime
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Results: Rhythmic Features

In the generated set there are more onsets on uneven 16th 
notes than on even ones.

● onset proportion
● ...

● note length, avg note length
● ...
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Results: Rhythmic Features

Sequence Nr. 30 (Figure 6.4)
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Results: Rhythmic Features

Peaks in the note length were not copied.

● onset proportion
● ...

● note length, avg note length
● ...
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Results:
Melodic Features
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Results: Melodic Features

There are high pitch jumps in the generated excerpts.

● pitch range
● ...
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Results: Melodic Features

Sequence Nr. 24 (Figure 6.7)
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Results: Melodic Features

Generated excerpts are mostly diatonic, but there are odd 
notes.

● diatonicity
● how much it stays in one key
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Results: Melodic Features

Sequence Nr. 13 (Figure 6.11)
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Results:
Qualitative Evaluation

● high pitch jumps
● rhythmic differences where not noticed
● ignoring few odd notes, still pleasant and coherent
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Results: Melodic Features

Sequence Nr. 24 (Figure 6.7)
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Results: Qualitative Evaluation

Sequence Nr. 50 (Figure 6.12)

● chimes
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Results: Qualitative Evaluation

Sequence Nr. 34 (Figure 6.15)

● rhythmically interesting
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Conclusion
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Conclusion: Objectives

● state of the art has been reviewed
● re-implementation

– MusicVAE’s flat variant implemented
– excerpts generated

● generated excerpts were evaluated

● What has been done
● MusicVAE re-implemented, excerpts generated & 

evaluated
● generated excerpts similar to training data, but still 

differences
● apart from these, generated melodies sounded 

pleasant
● Future work

● larger dataset, analysis of it
● regularization techniques to reduce overfitting
● sudden jumps in the loss → investigate reason and 

improve training
● improve hierarchical model
● condition the latent space → 
● evaluate latent space in a different way
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Conclusion: Findings

● more onsets on uneven 16th notes
● single non-diatonic notes & pitch jumps
● mostly musically coherent & pleasant-

sounding

● What has been done
● MusicVAE re-implemented, excerpts generated & 

evaluated
● generated excerpts similar to training data, but still 

differences
● apart from these, generated melodies sounded 

pleasant
● Future work

● larger dataset, analysis of it
● regularization techniques to reduce overfitting
● sudden jumps in the loss → investigate reason and 

improve training
● improve hierarchical model
● condition the latent space → 
● evaluate latent space in a different way
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Conclusion: Future Work

● recreate training dataset
● adjust training procedure
● extend model

– hierarcical, polyphonic, conditioned

● recreate training dataset
– larger dataset
– analyse training dataset more thoroughly 

before training
– consider alternative representations

● adjust training procedure
– tune weight decay
– scheduled sampling & annealing of β
– more thorough hyperparameter search
– find out reason for jumps in the loss curve & 

adjust training accordingly
● extend model

– implement hierarchical model
– generate polyphonic music
– find out ways to conditioned generation using 

latent space
– additional evaluation procedures, in particular 

larger-scale listening experiments



  

Thank you!



  

32 / 30

Recurrent Neural Networks
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MusicVAE: RNNs

RNNs are neural networks with feedback.

Picture retrieved July 8, 2023 from 
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-rolled.png

● RNNs can be used to process time-series data
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MusicVAE: RNNs

RNNs can be represented unrolled.

Picture retrieved and changed July 8, 2023 from 
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png
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MusicVAE: RNNs

Standart RNNs have some drawbacks.

Picture retrieved July 8, 2023 from 
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-SimpleRNN.png

● problems:
● ...
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MusicVAE: RNNs

Solution: LSTMs

Picture retrieved and changed July 8, 2023 from 
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-chain.png

1 2 3 4

5

6

● LSTMs
● forget gate
● input gate
● output gate



  

37 / 30

Generated Excerpts
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Generated Excerpts

Sequence Nr. 30 (Figure 6.4)
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Generated Excerpts

Sequence Nr. 24 (Figure 6.7)
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Results: Melodic Features

Sequence Nr. 13 (Figure 6.11)
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Generated Excerpts

Sequence Nr. 50 (Figure 6.12)

● chimes



  

42 / 30

Generated Excerpts

Sequence Nr. 34 (Figure 6.15)

● rhythmically interesting
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Evaluation
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Results: Rhythmic Features

In the generated set there are more onsets on uneven 16th 
notes than on even ones.
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Latent Space
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MusicVAE: VAEs

well-formed

● Figure: desirable
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MusicVAE: VAEs

not well-formed

● Figure: undesirable
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Results: Training

The structure of the latent spaces of Models 
1, 7, and 8 was examined.

● grid search
● …

● structure of latent space
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