

Generation of Symbolic Music Based on MusicVAE

Jakob Lerch

Supervisors:

Prof. Dr. Shardt

Dr. Andrew McLeod

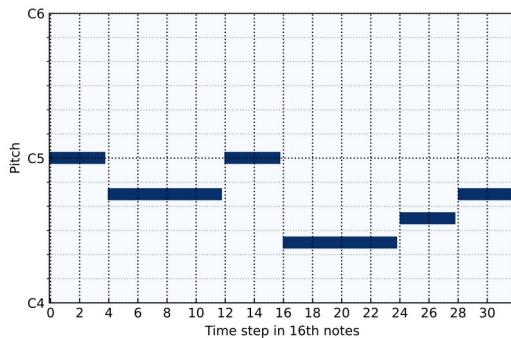
Dr. Jakob Abeßer

July 27, 2023

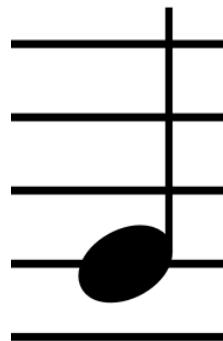
Music generation could be **supportive for composition or live performances.**

Picture retrieved July 16, 2023 from
<https://pixabay.com/photos/music-producer-studio-actor-audio-4507819/>

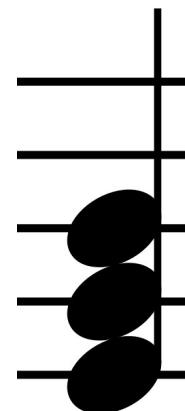
Introduction



or



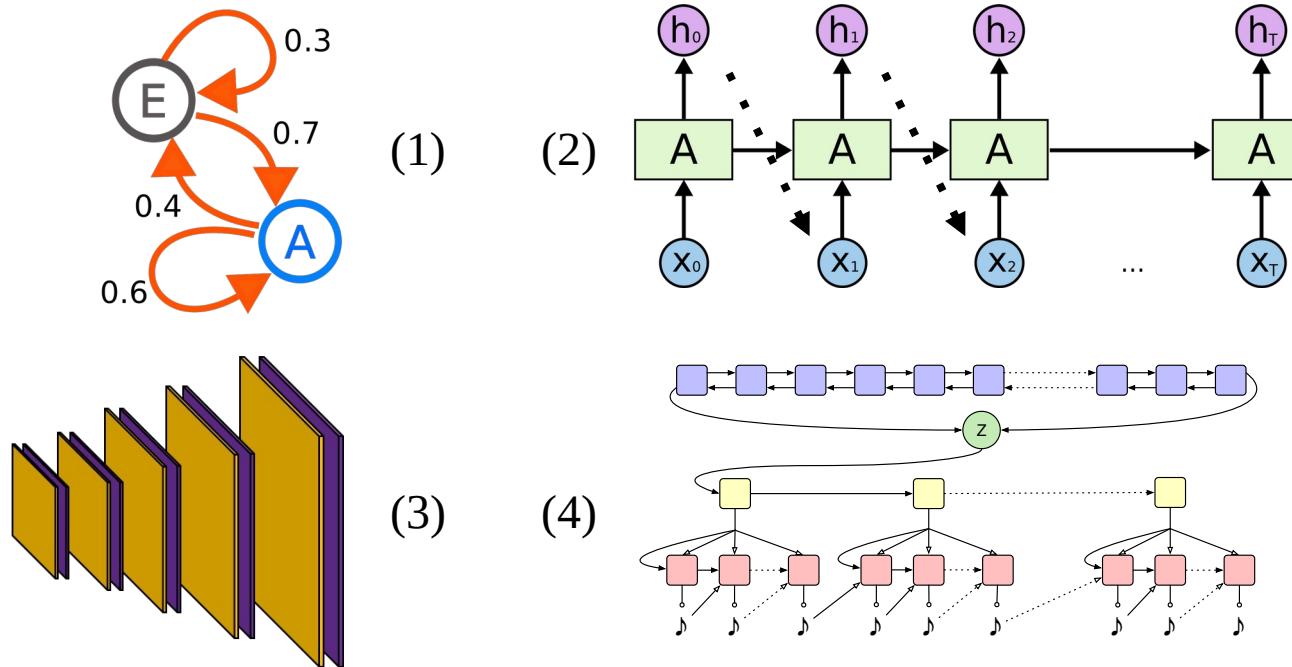
or



unconditioned or conditioned

- (1) review state of the art**
- (2) re-implement MusicVAE**
- (3) evaluate quality of generated excerpts**

State of the Art



(1) Picture retrieved July 17, 2023 from https://en.wikipedia.org/wiki/Markov_chain#/media/File:Markovkate_01.svg

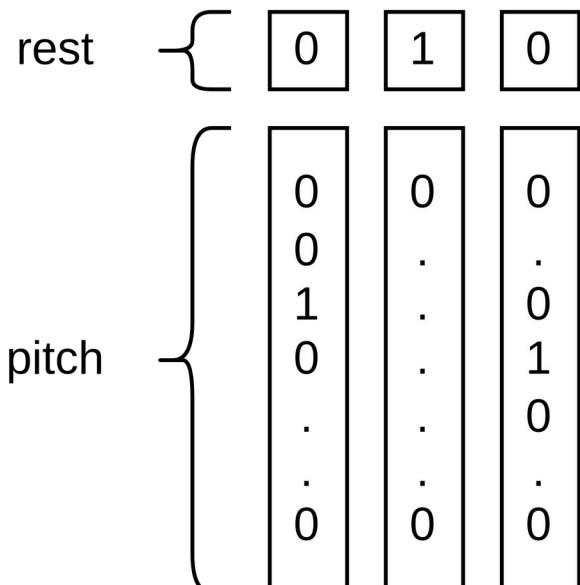
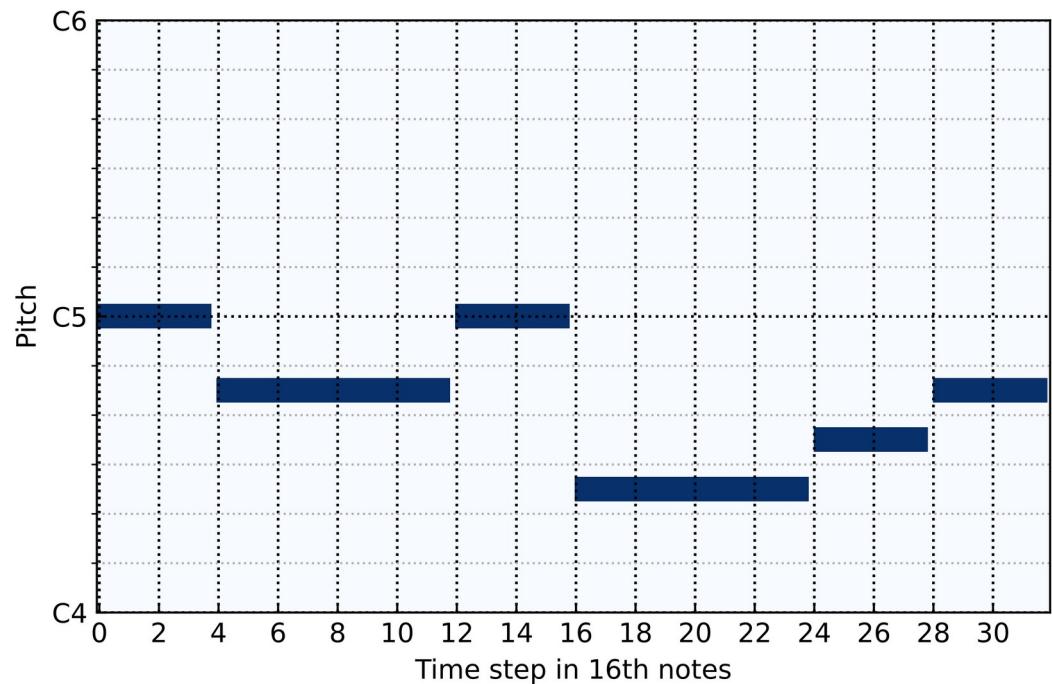
(2) Picture retrieved and changed July 17, 2023 from <https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png>

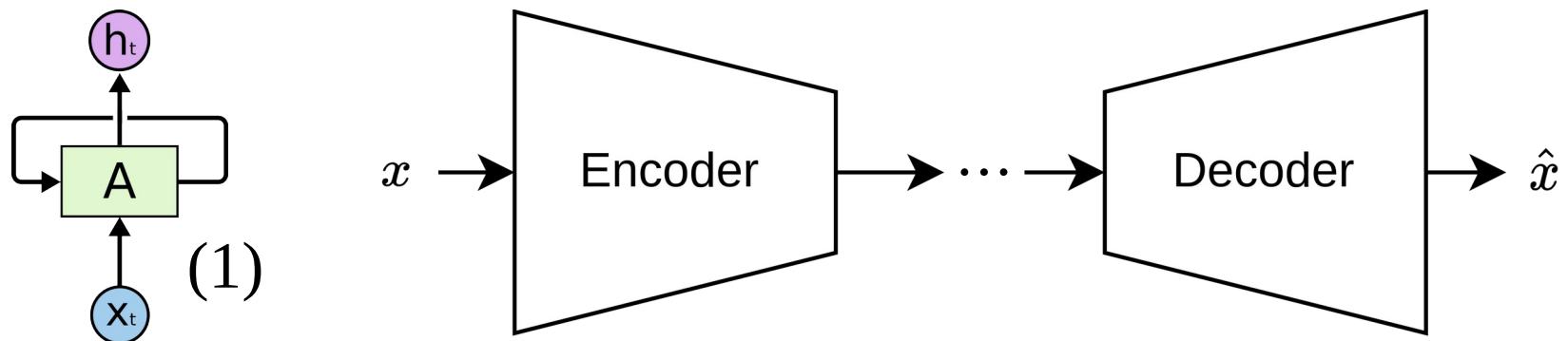
(3) Picture retrieved and changed July 17, 2023 from https://clinicadl.readthedocs.io/en/latest/images/transfer_learning.png

(4) Picture retrieved and changed July 17, 2023 from https://magenta.tensorflow.org/assets/music_vae/architecture.png

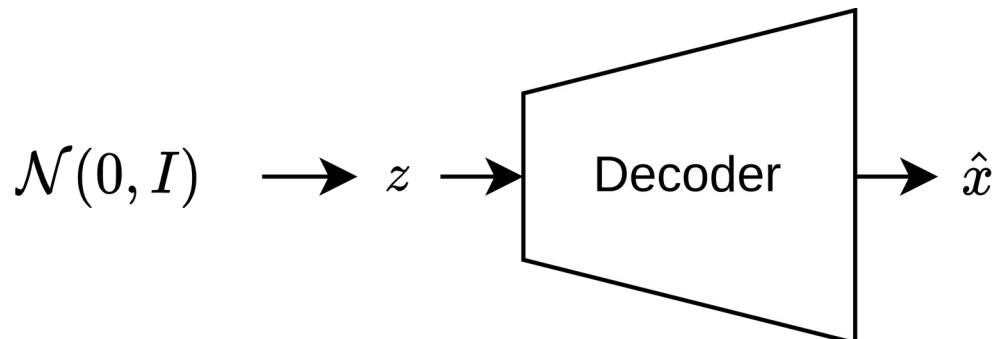
MusicVAE

Representation

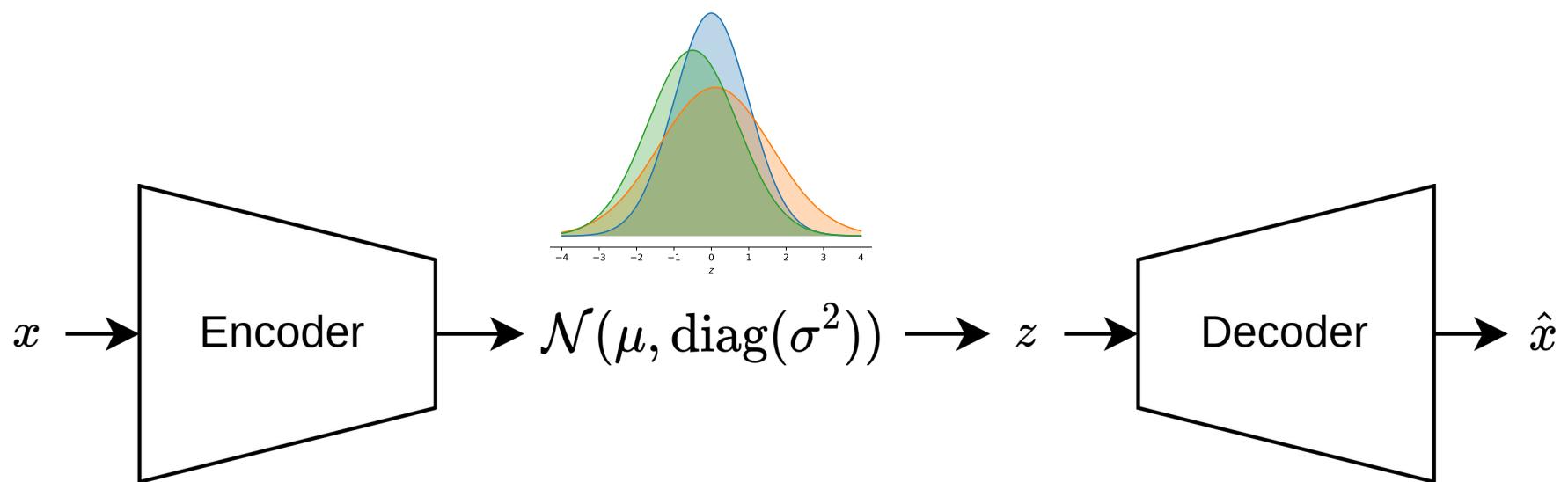




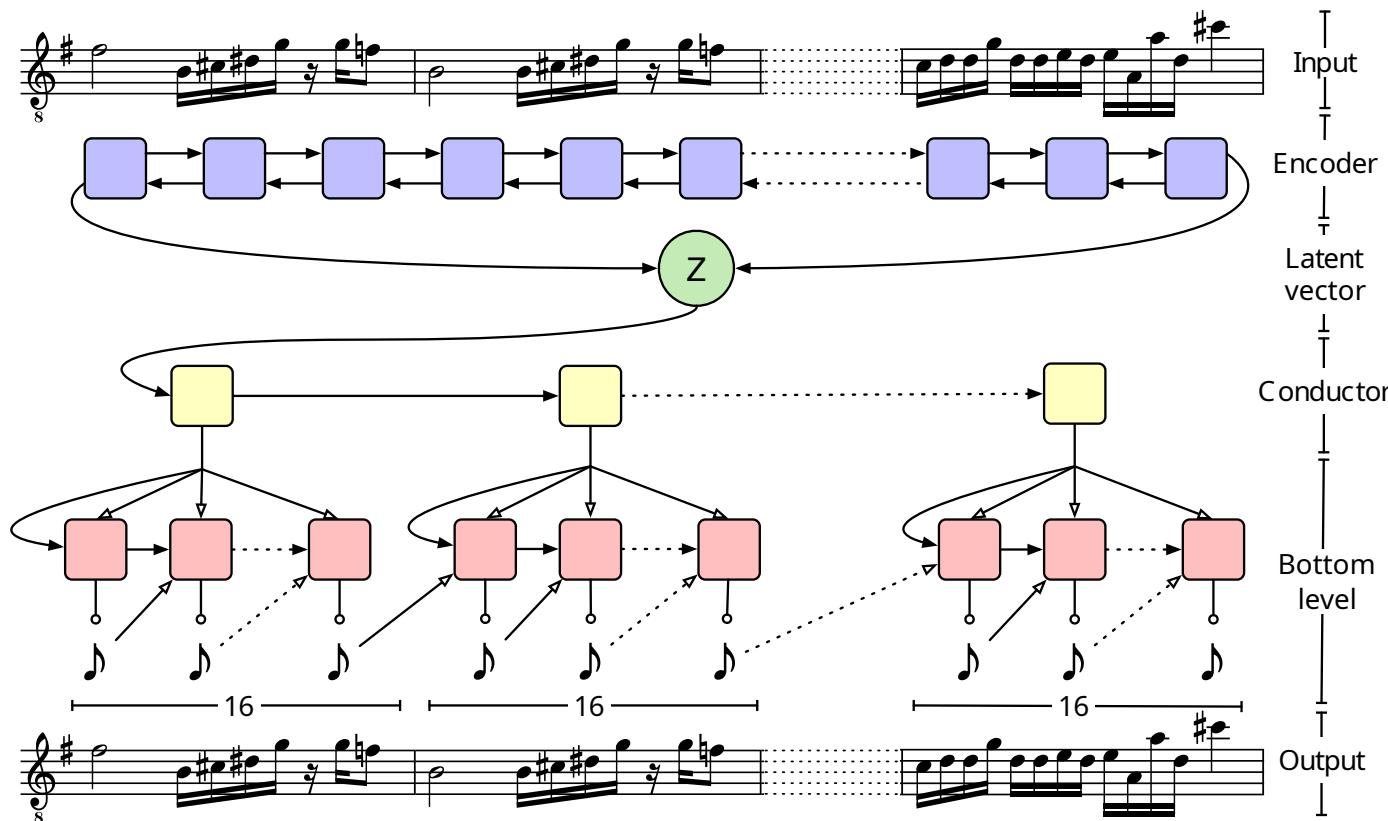
Train a model to
generate music
**from a random
vector.**



(1) Picture retrieved July 8, 2023 from
<https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-rolled.png>



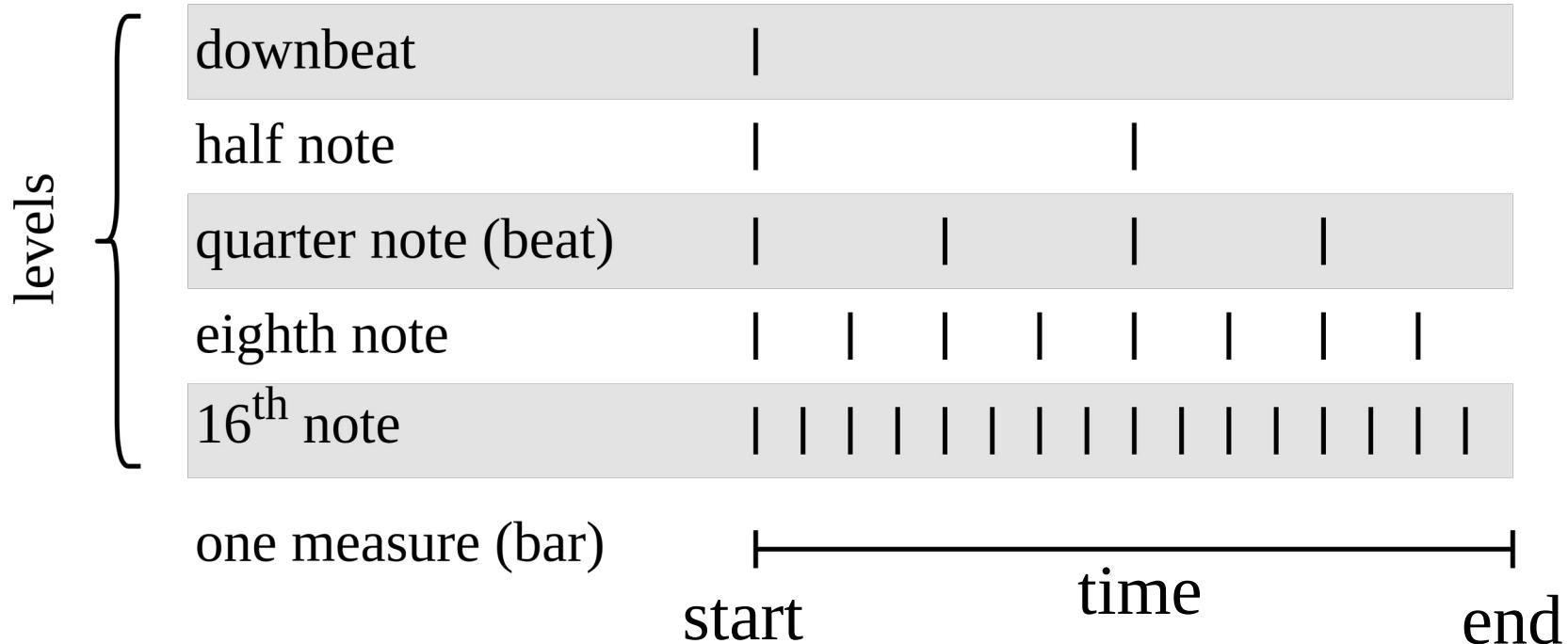
$$L(x) = \text{rec. loss} + D_{KL}(\underline{\mathcal{N}(\mu, \text{diag}(\sigma^2))} \parallel \underline{\mathcal{N}(0, I)})$$



$$L(x) = \text{rec. loss} + \underline{\beta} \max[D_{KL}, \underline{\lambda}]$$

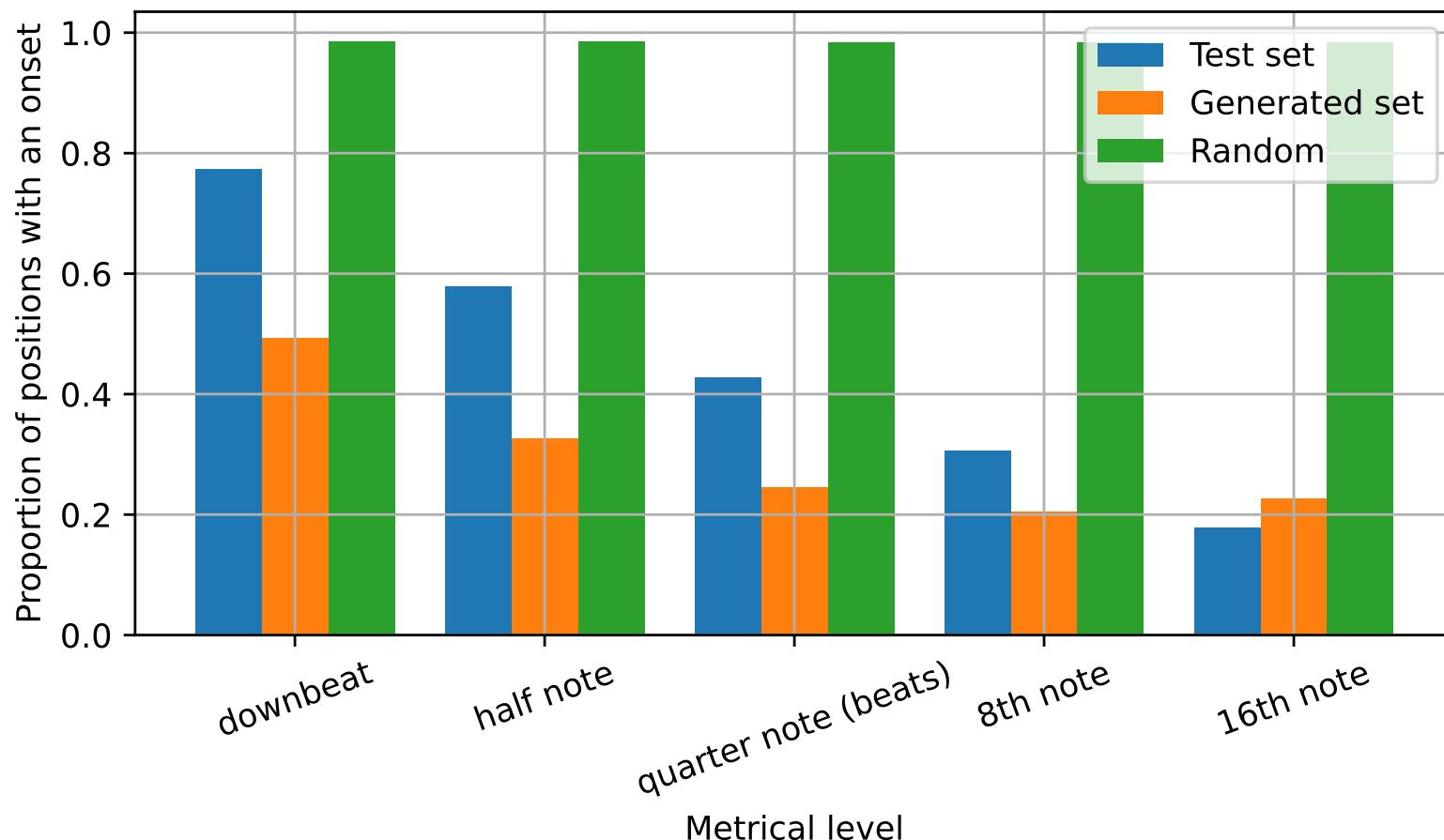
- **β and λ chosen after grid search**
 - $\beta = 1; \lambda = 33.3$
- optimizer
 - Adam
 - learning rate (LR) = 10^{-3}
- batch size = 64
- weight decay
 - L_2 regularization with weight 10^{-6}
- LR scheduling
 - customized variant of ReduceLROnPlateau
- early stopping was used

Results: Rhythmic Features



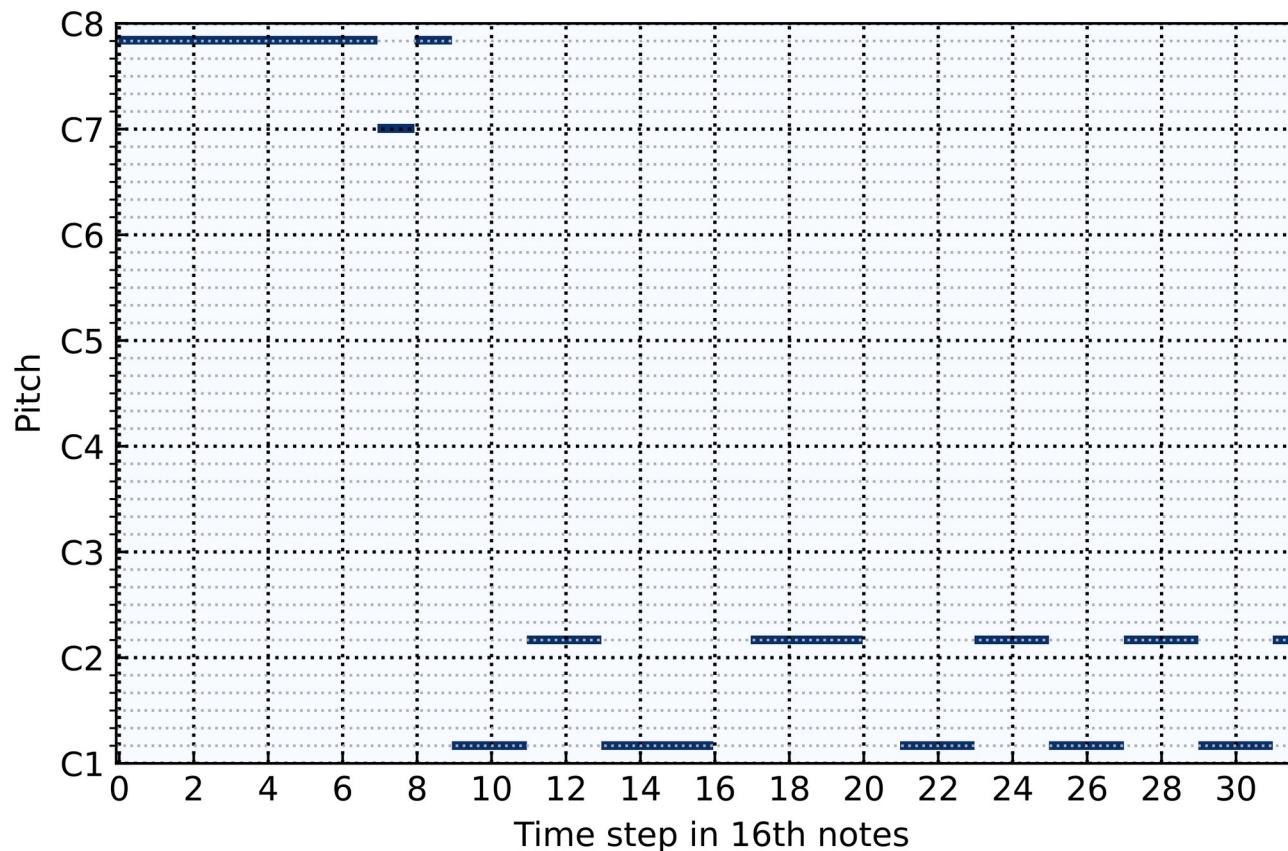
Note onsets can be assigned to a **metrical level**.

Results: Rhythmic Features



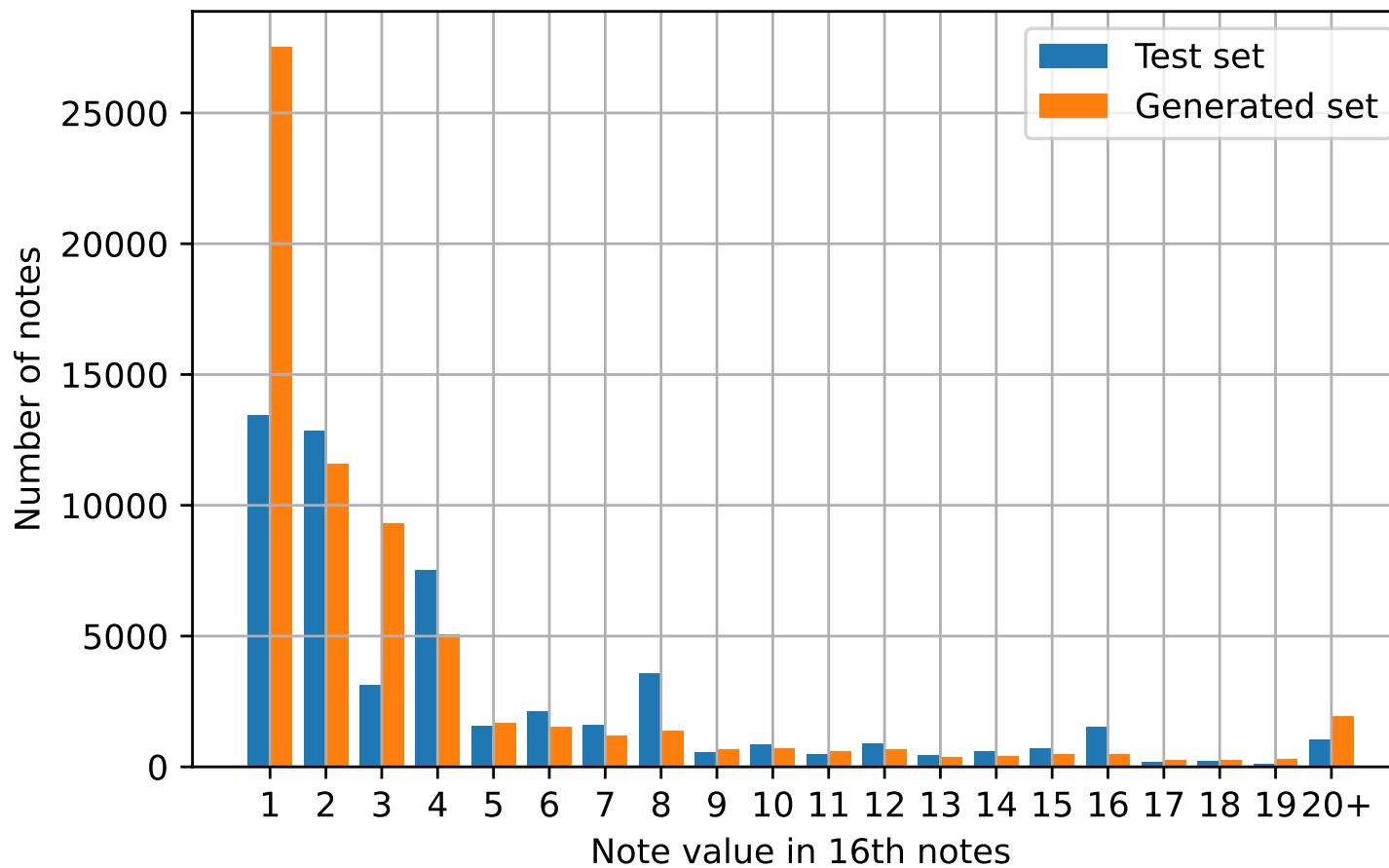
In the generated set there are **more onsets on uneven 16th notes** than on even ones.

Results: Rhythmic Features



Sequence Nr. 30 (Figure 6.4)

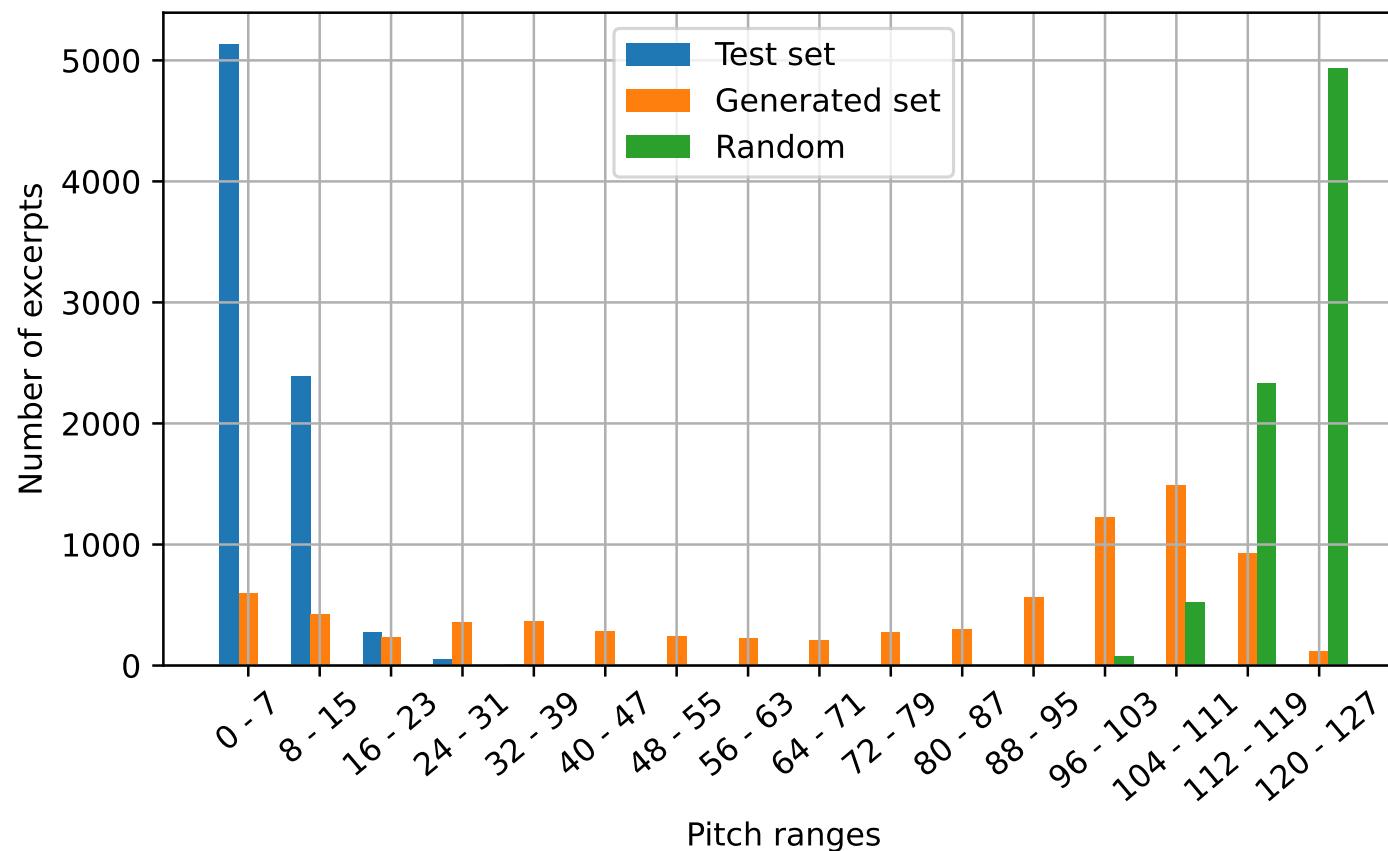
Results: Rhythmic Features



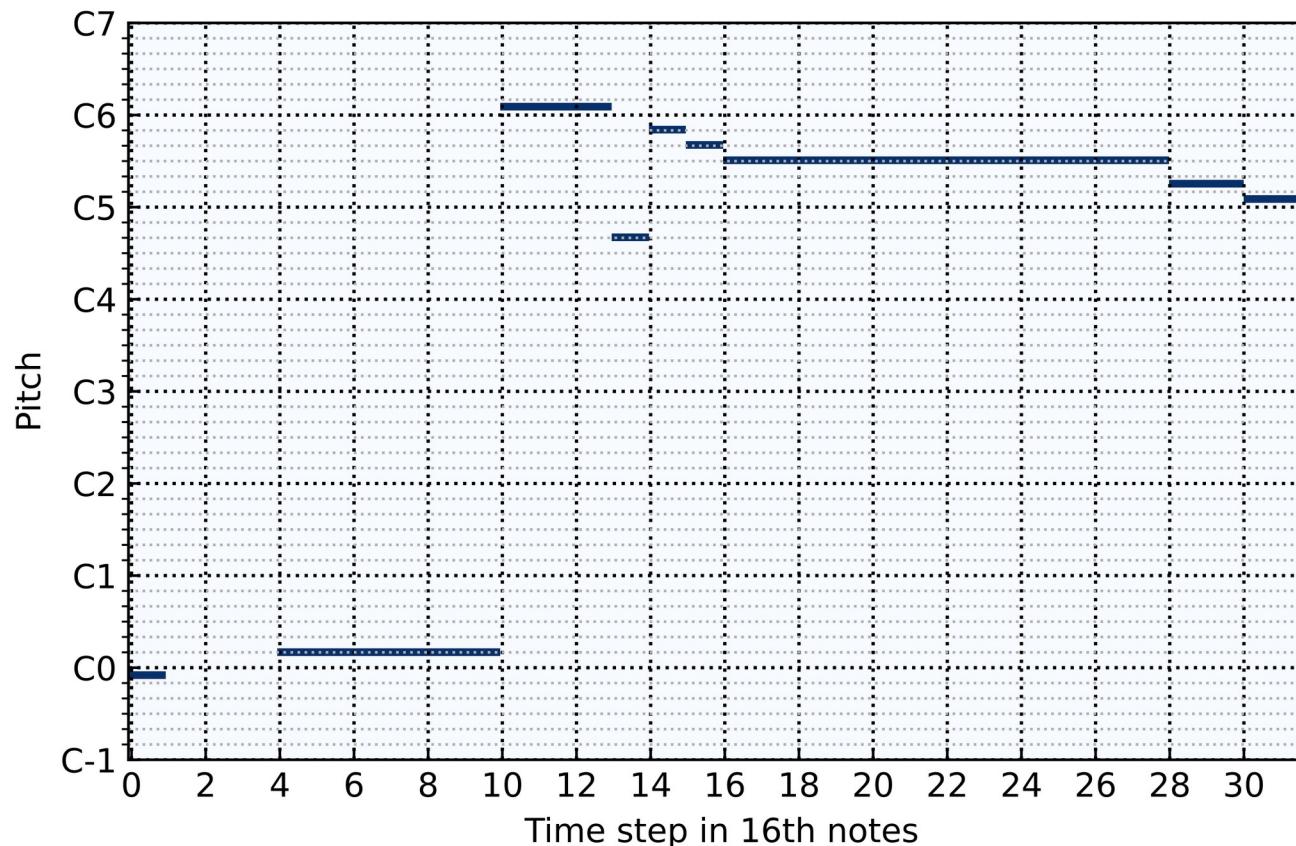
Peaks in the note length were not copied.

Results: Melodic Features

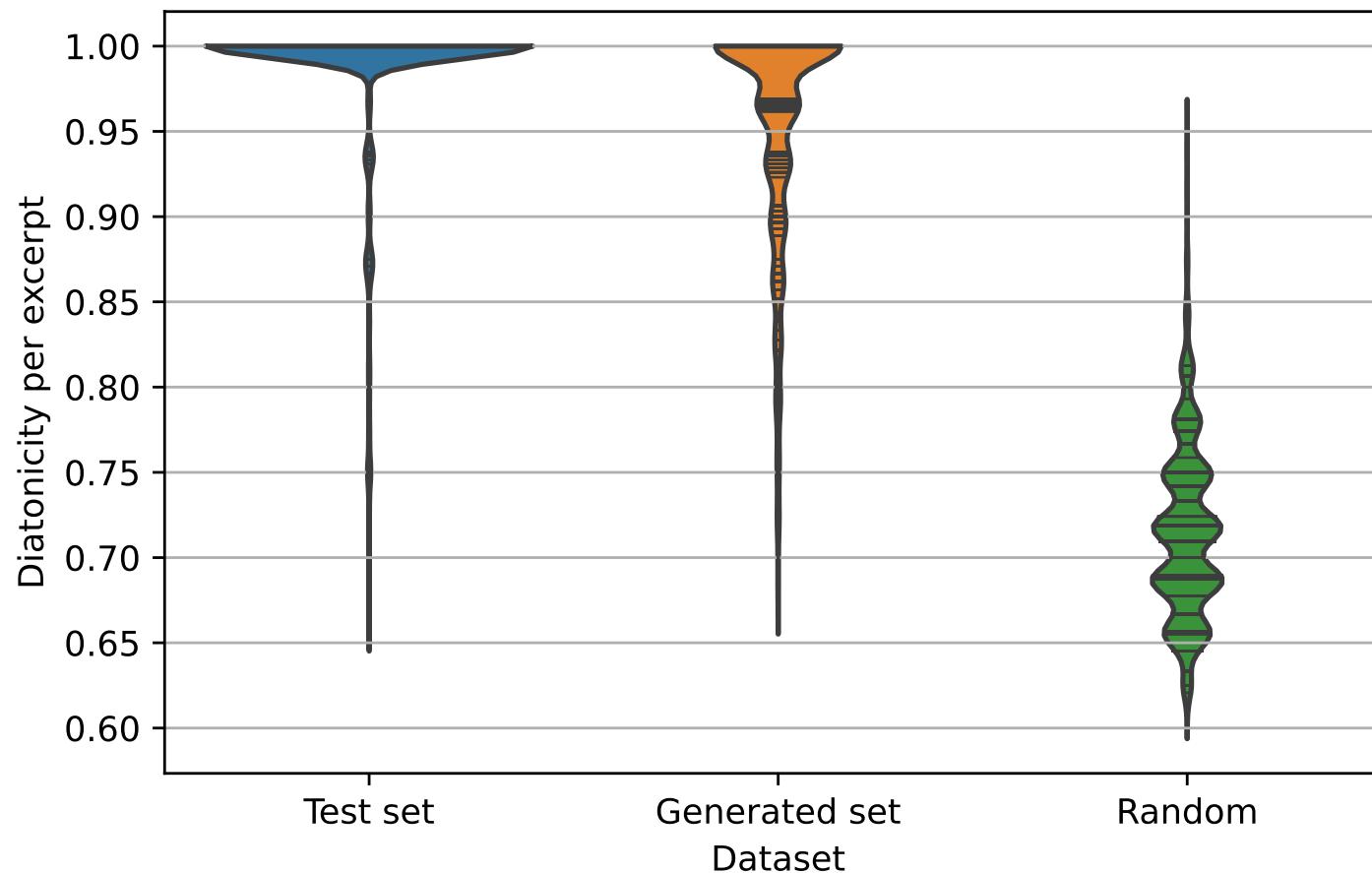
Results: Melodic Features



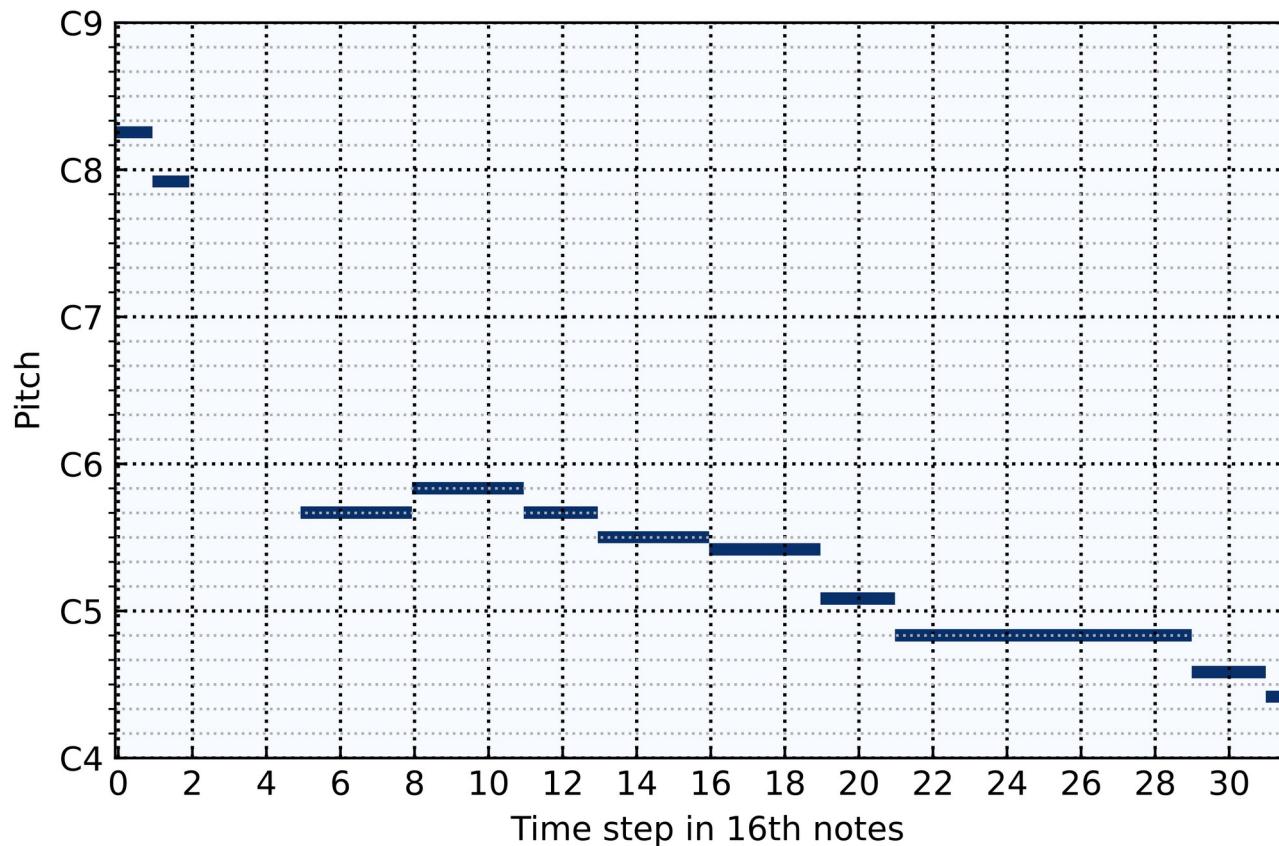
There are **high pitch jumps** in the generated excerpts.



Sequence Nr. 24 (Figure 6.7)

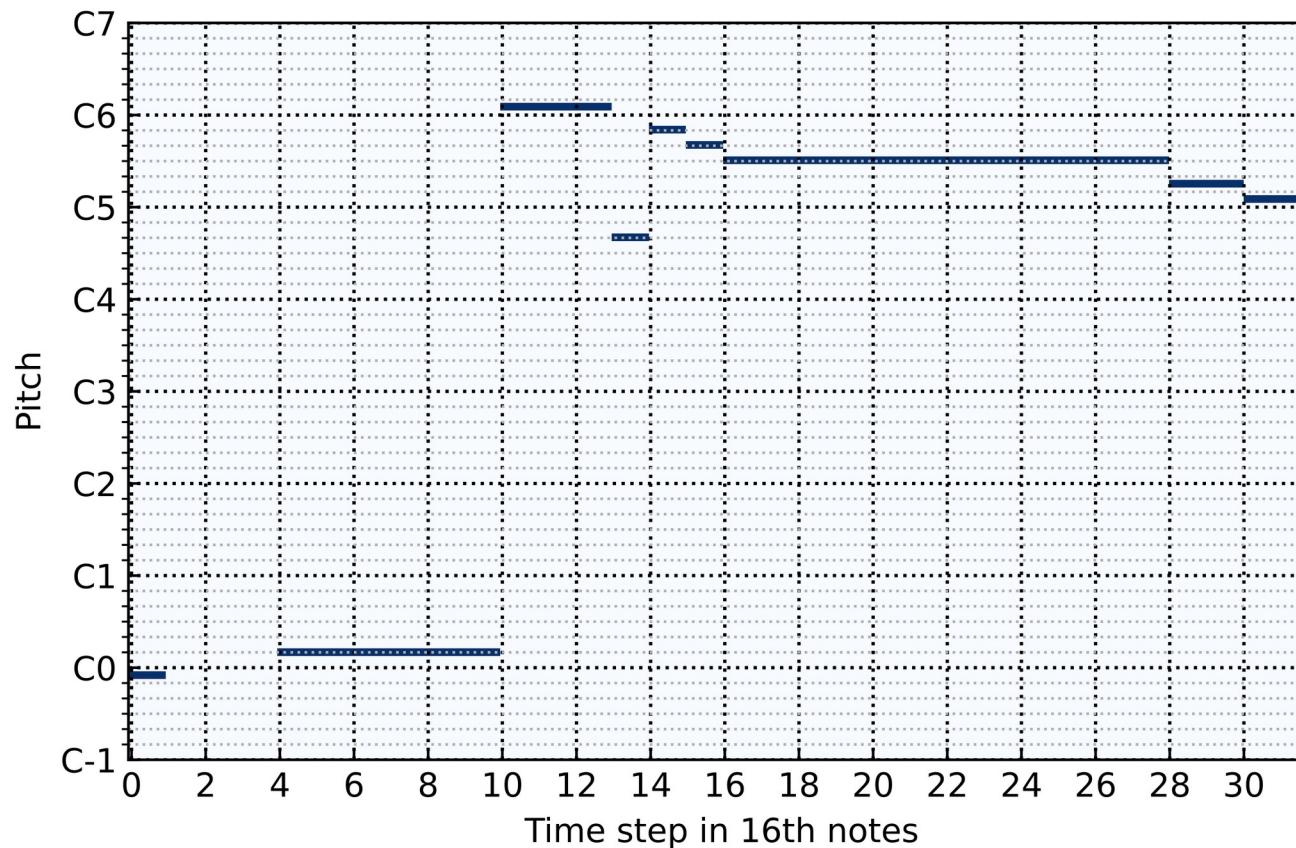


Generated excerpts are **mostly diatonic**, but there are odd notes.

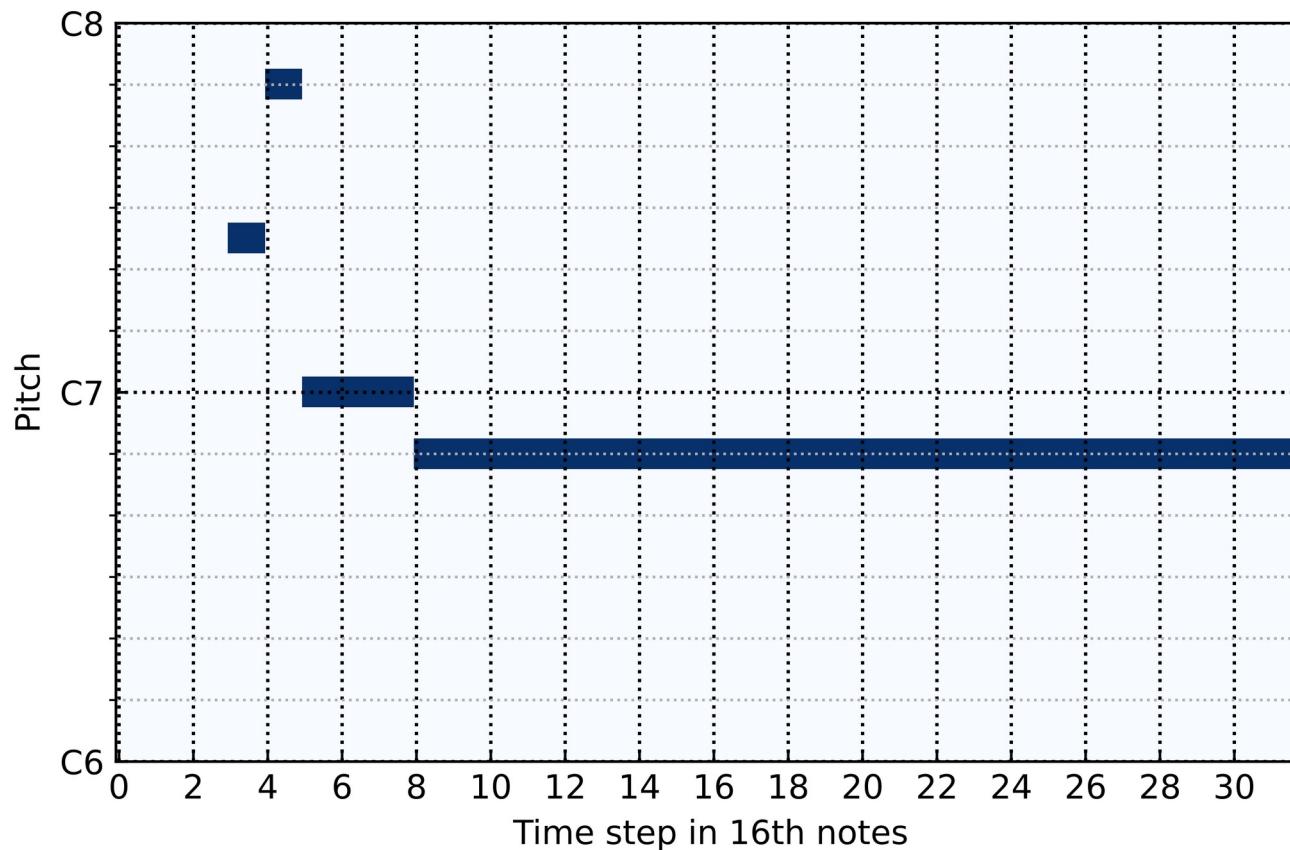


Sequence Nr. 13 (Figure 6.11)

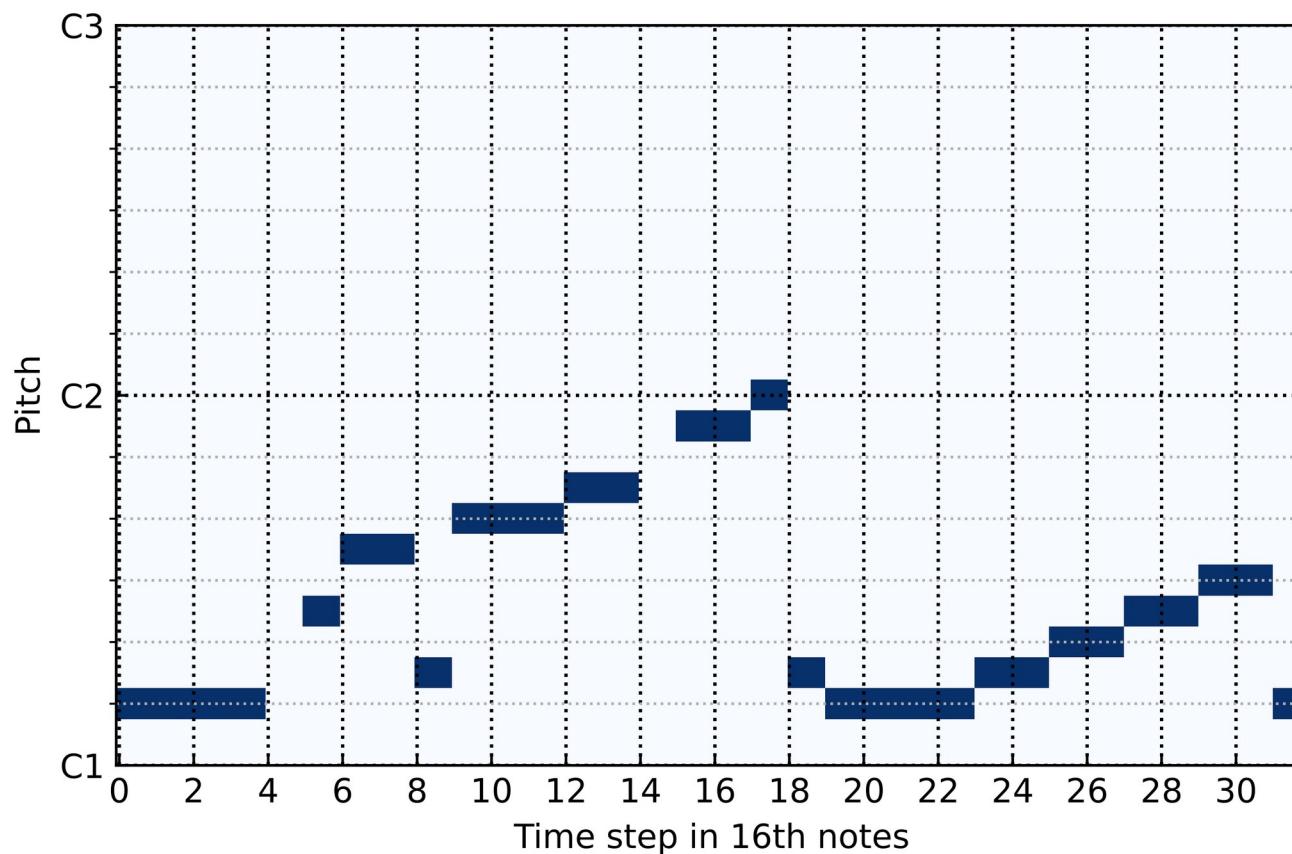
Results: Qualitative Evaluation



Sequence Nr. 24 (Figure 6.7)



Sequence Nr. 50 (Figure 6.12)



Sequence Nr. 34 (Figure 6.15)

Conclusion

- state of the art has been reviewed
- re-implementation
 - MusicVAE's flat variant implemented
 - excerpts generated
- generated excerpts were evaluated

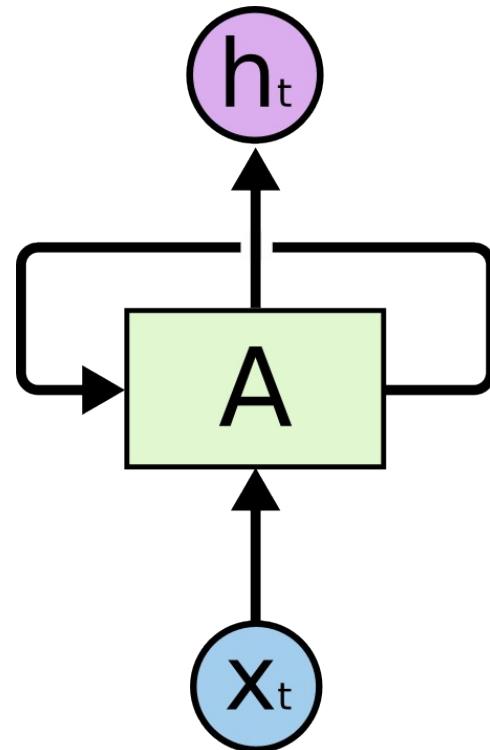
- more **onsets on uneven 16th notes**
- single **non-diatonic notes & pitch jumps**
- mostly musically coherent & **pleasant-sounding**

- recreate training **dataset**
- adjust training **procedure**
- **extend** model
 - hierarcical, polyphonic, conditioned

Thank you!

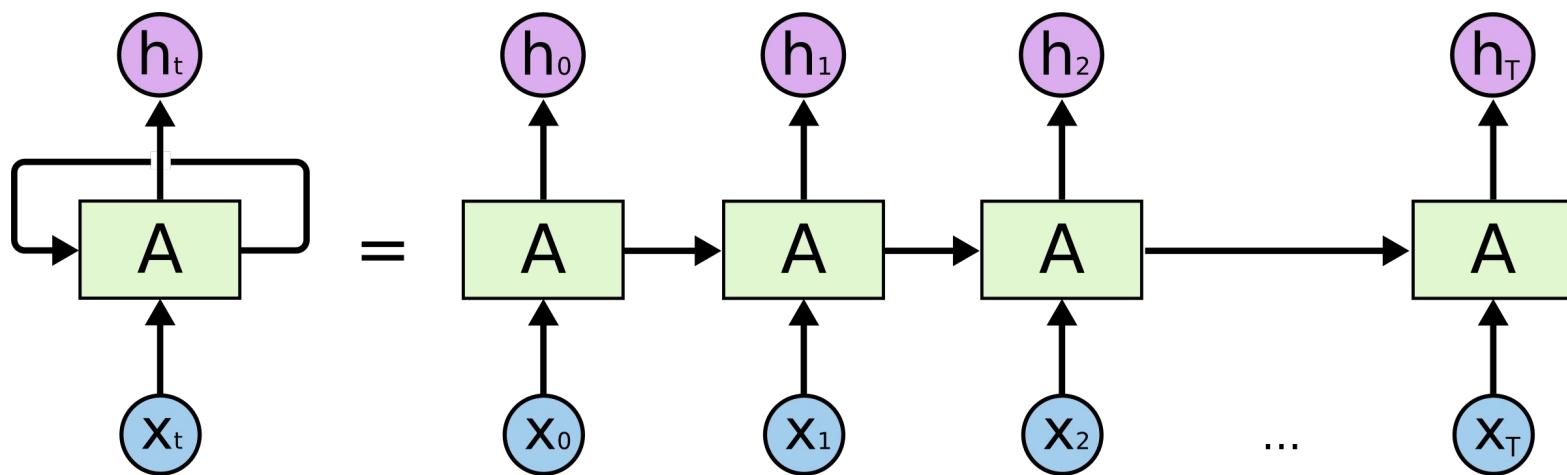
Recurrent Neural Networks

RNNs are neural networks with feedback.

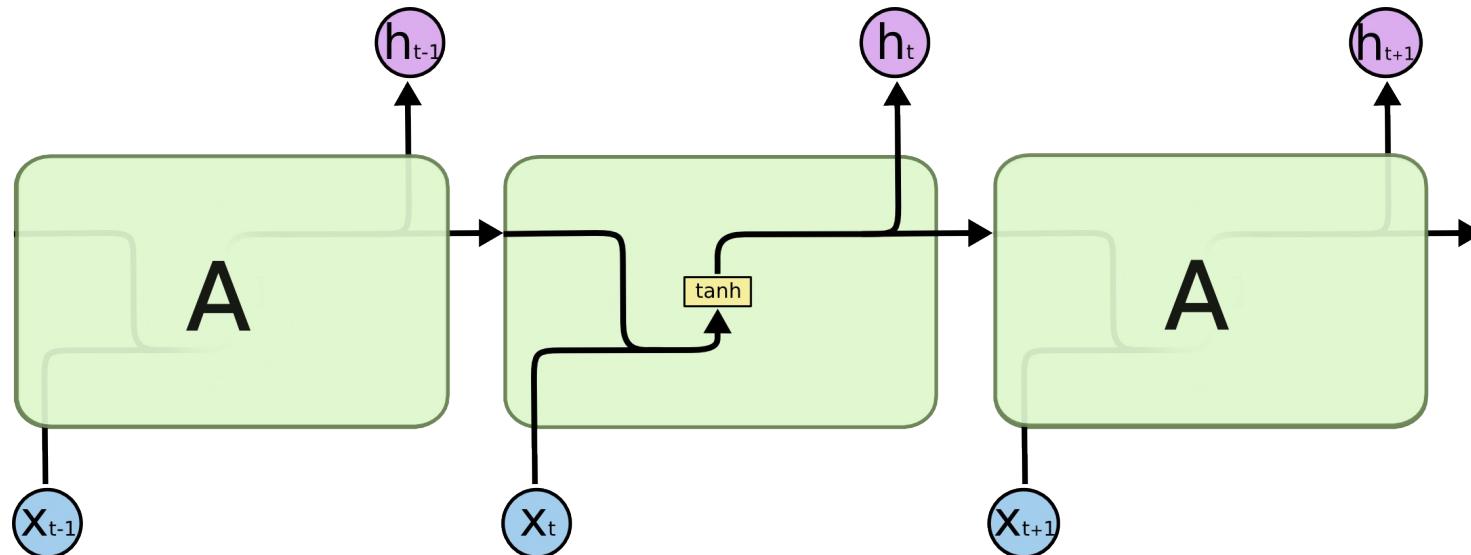


Picture retrieved July 8, 2023 from
<https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-rolled.png>

RNNs can be represented unrolled.



Picture retrieved and changed July 8, 2023 from
<https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png>



$$h_t = \tanh(W_i x_t + b_i + W_h h_{t-1} + b_h)$$

Standart RNNs have some drawbacks.

Picture retrieved July 8, 2023 from

<https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-SimpleRNN.png>



$$1 : i_t = \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{t-1} + b_{hi}) \quad \sigma(x) = \text{sigmoid}(x)$$

$$2 : f_t = \sigma(W_{if}x_t + b_{if} + W_{hf}h_{t-1} + b_{hf})$$

$$3 : g_t = \tanh(W_{ig}x_t + b_{ig} + W_{hg}h_{t-1} + b_{hg})$$

$$4 : o_t = \sigma(W_{io}x_t + b_{io} + W_{ho}h_{t-1} + b_{ho})$$

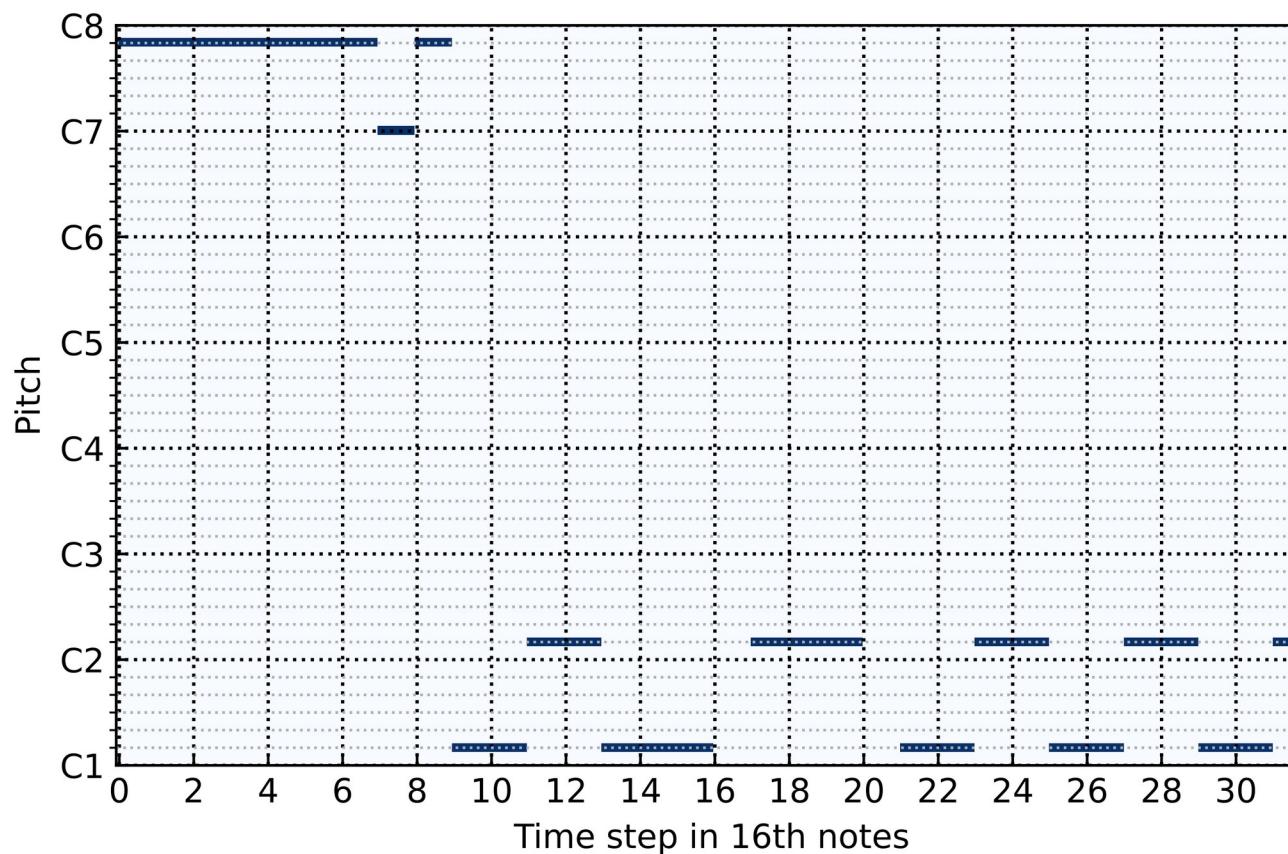
$$5 : c_t = f_t \odot c_{t-1} + i_t \odot g_t$$

$$6 : h_t = o_t \odot \tanh(c_t)$$

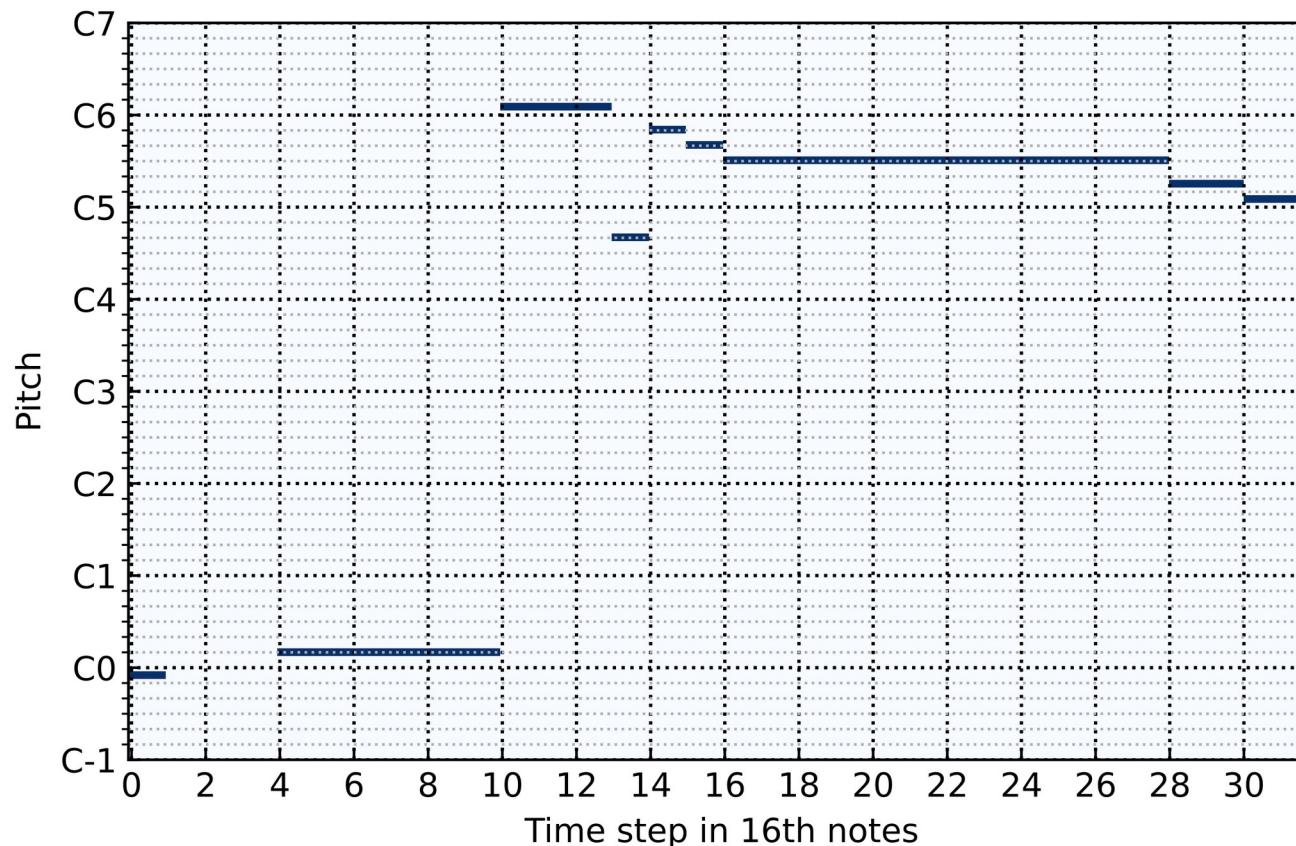
Picture retrieved and changed July 8, 2023 from
<https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-chain.png>

Generated Excerpts

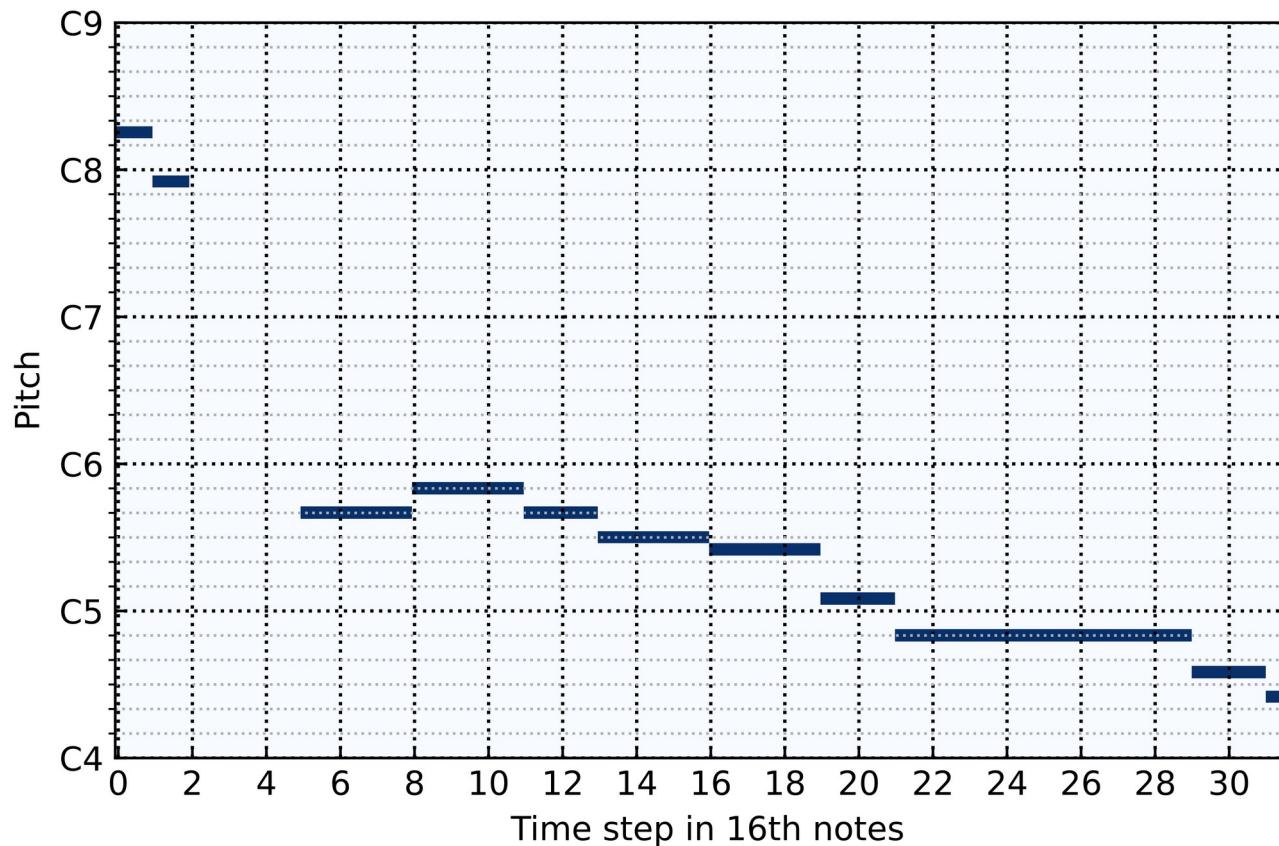
Generated Excerpts



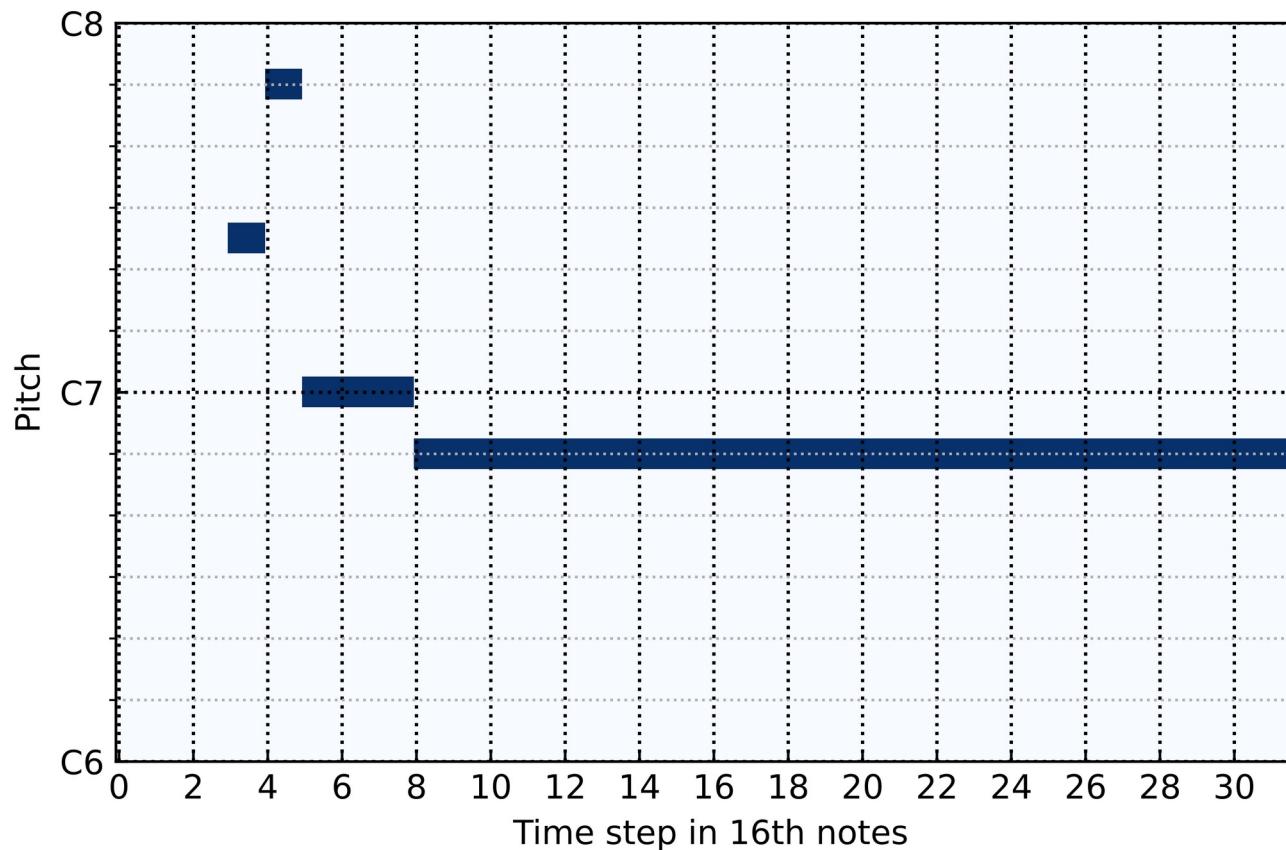
Sequence Nr. 30 (Figure 6.4)



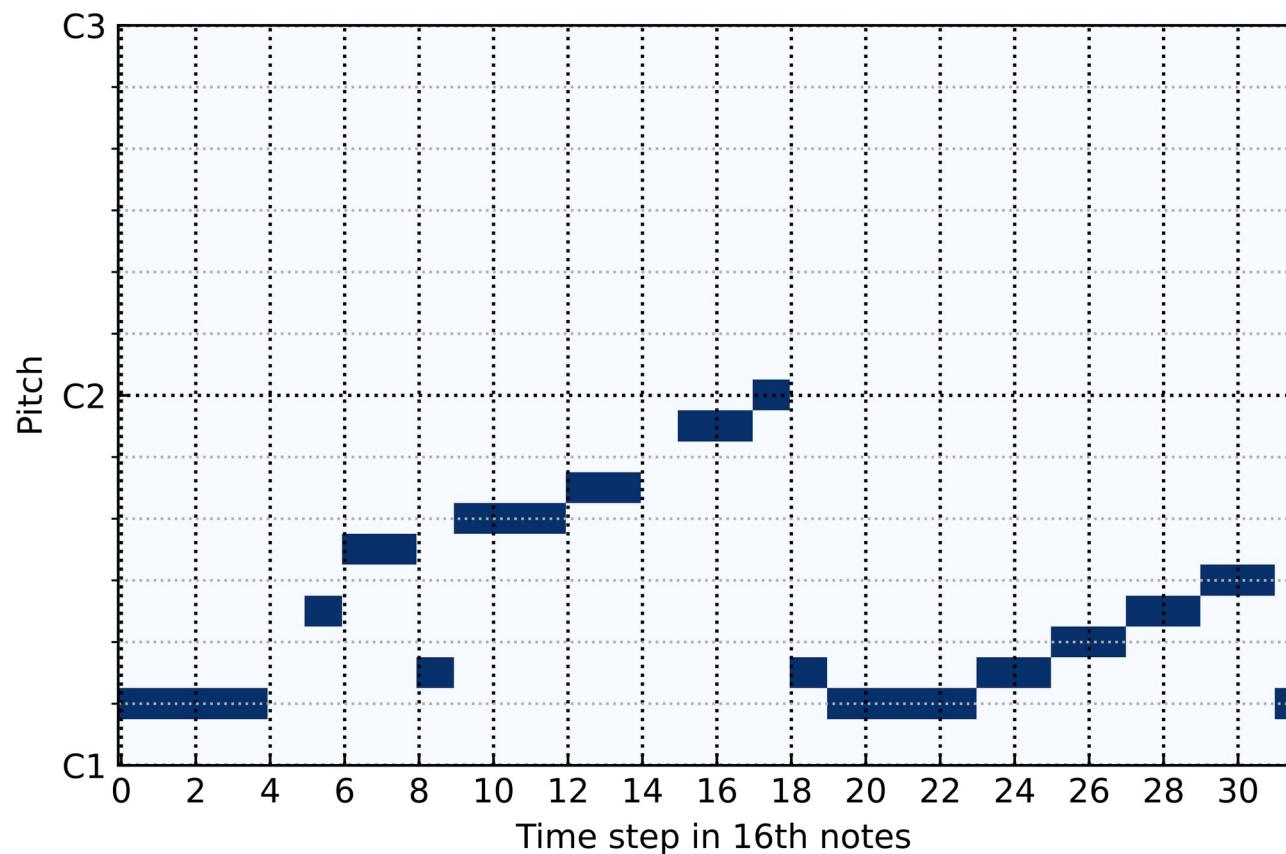
Sequence Nr. 24 (Figure 6.7)



Sequence Nr. 13 (Figure 6.11)



Sequence Nr. 50 (Figure 6.12)



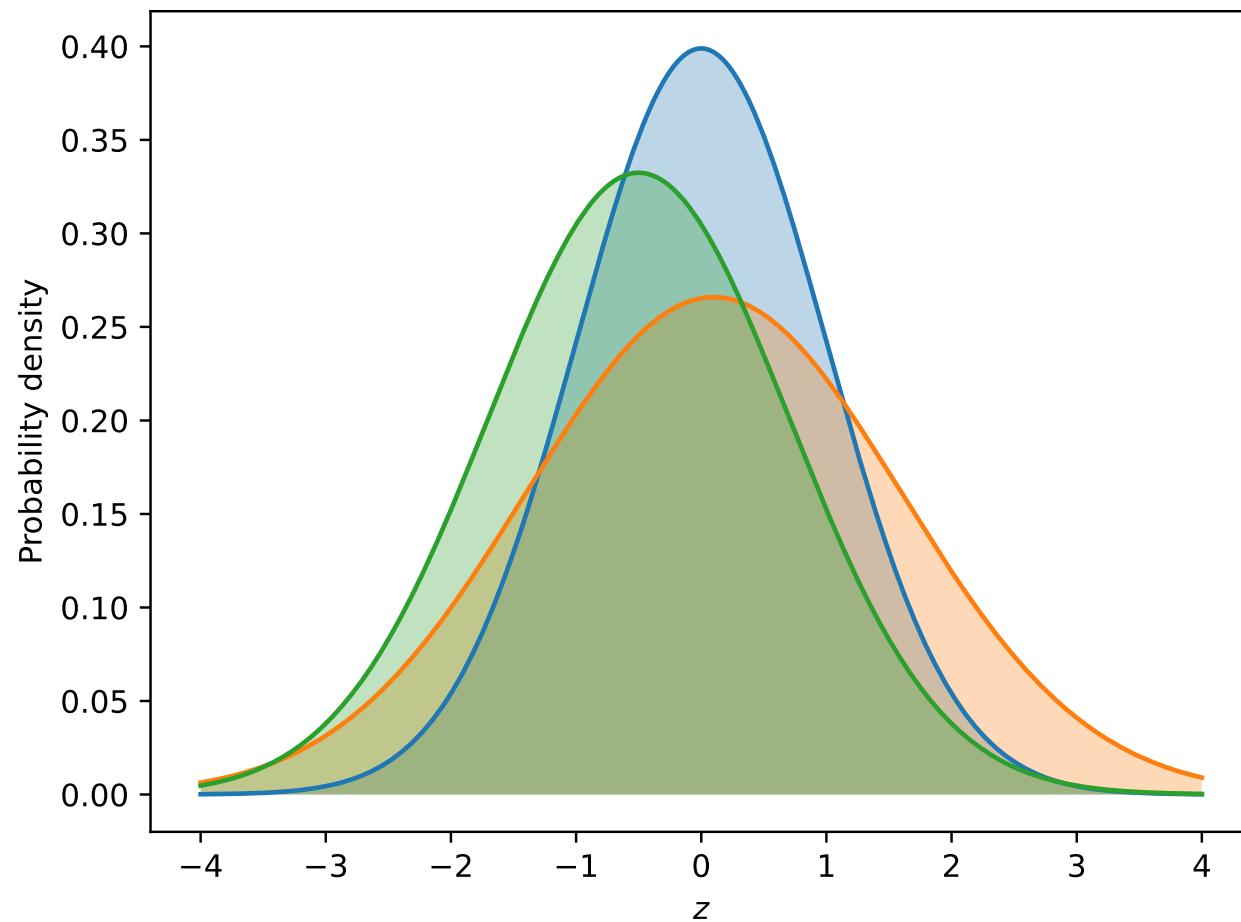
Sequence Nr. 34 (Figure 6.15)

Evaluation

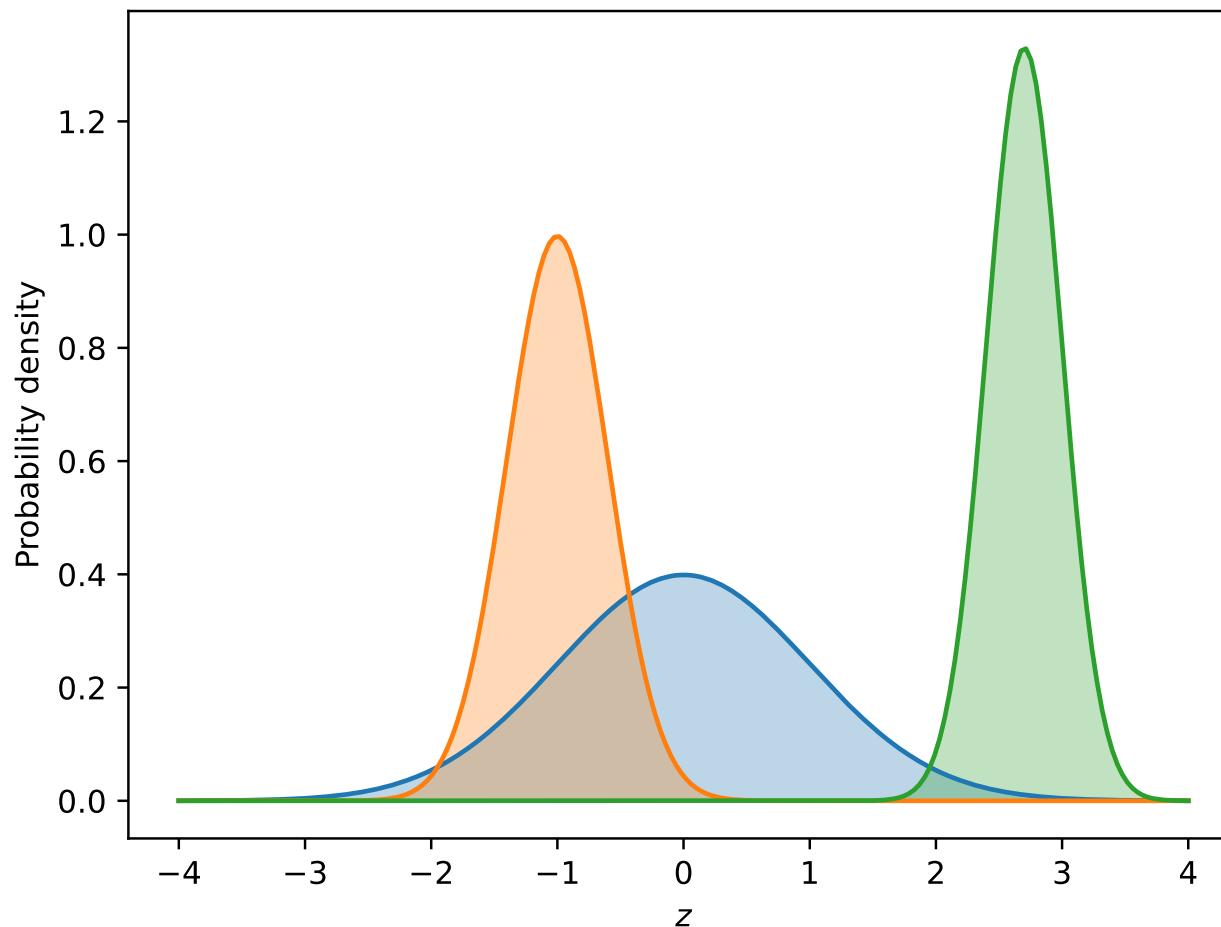


In the generated set there are **more onsets on uneven 16th notes** than on even ones.

Latent Space

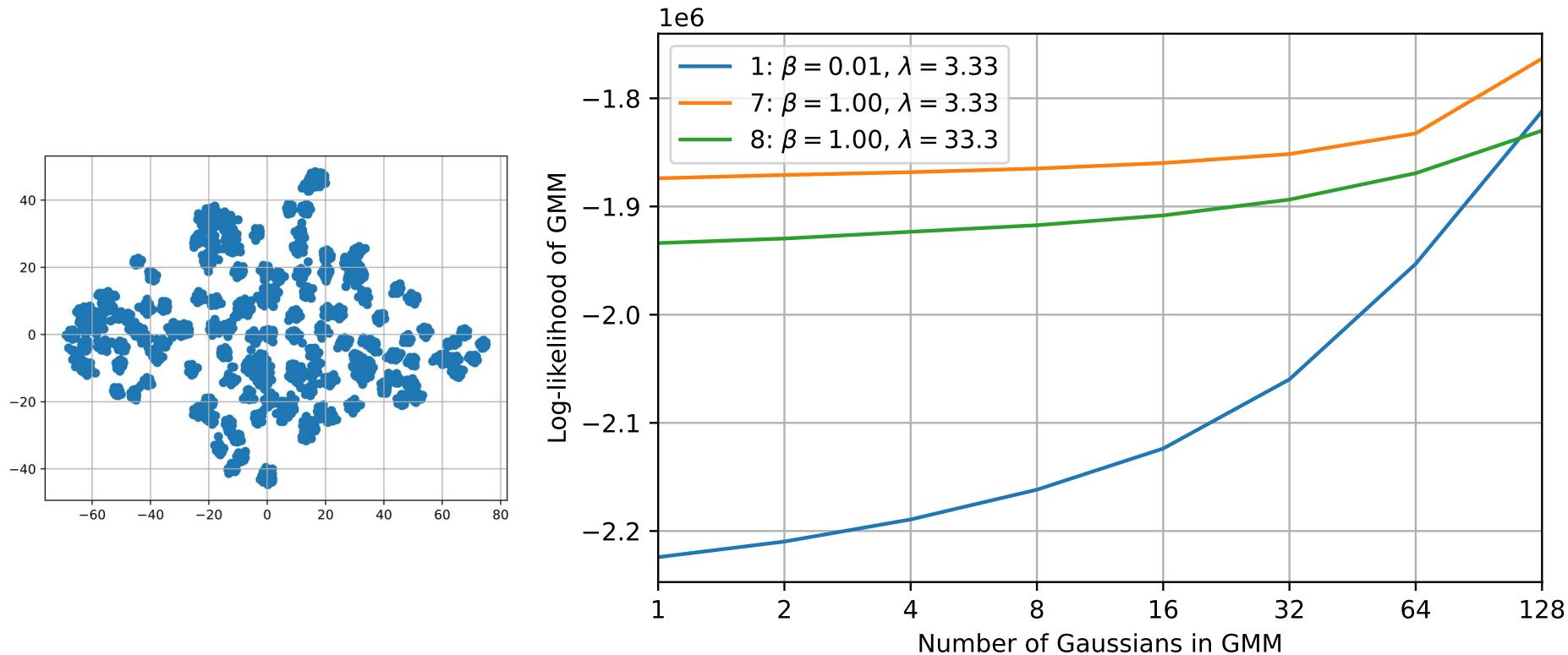


well-formed



not well-formed

Results: Training



The structure of the latent spaces of Models 1, 7, and 8 was examined.

Generation of Symbolic Music Based on MusicVAE

Jakob Lerch

Supervisors:

Prof. Dr. Shardt

Dr. Andrew McLeod

Dr. Jakob Abeßer

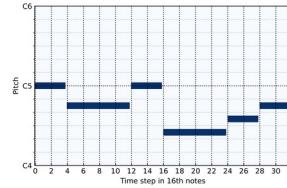
July 27, 2023

Music generation could be **supportive for composition or live performances.**

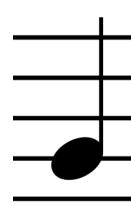
Picture retrieved July 16, 2023 from
<https://pixabay.com/photos/music-producer-studio-actor-audio-4507819/>

- **What is music generation?**
- **why do we care?**
 - create music for creative productions
 - support during composition or live performances

Introduction



or



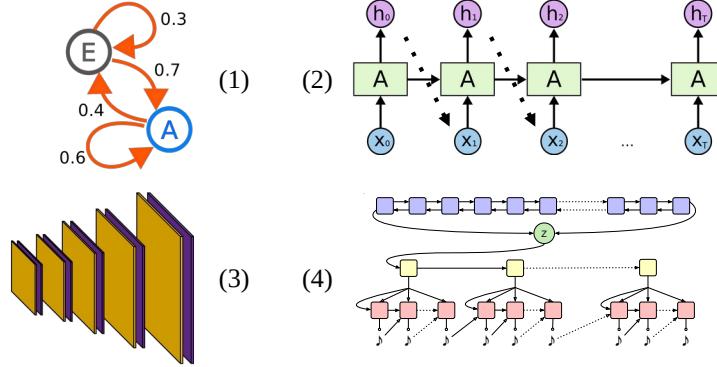
or

unconditioned or conditioned

- **symbolic vs. waveform**
- **monophonic vs. polyphonic**
- **conditioned vs. unconditioned**
- **Western music**
- **objectives**
 - summarize state of the art
 - re-implement MusicVAE
 - training data: two-bar monophonic sequences
 - generate excerpts and discuss their quality

- (1) review **state of the art**
- (2) **re-implement** MusicVAE
- (3) **evaluate quality** of generated excerpts

State of the Art



(1) Picture retrieved July 17, 2023 from https://en.wikipedia.org/wiki/Markov_chain#/media/File:Markovkate_01.svg

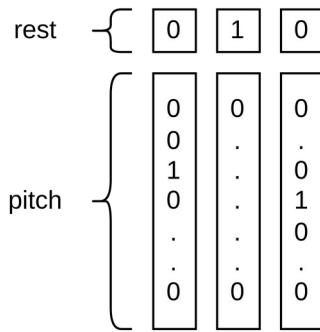
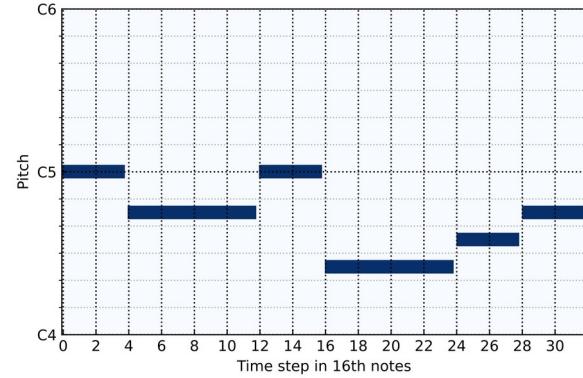
(2) Picture retrieved and changed July 17, 2023 from <https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png>

(3) Picture retrieved and changed July 17, 2023 from https://clinicadl.readthedocs.io/en/latest/images/transfer_learning.png

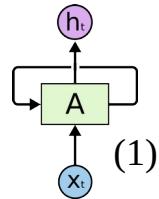
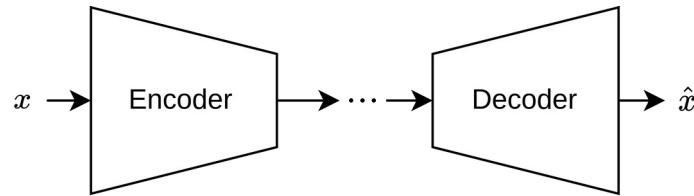
(4) Picture retrieved and changed July 17, 2023 from https://magenta.tensorflow.org/assets/music_vae/architecture.png

- **approaches**
 - historically: Illiac Suite, use markov models
 - just RNNs, LSTMs
 - generate **autoregressively**
 - **difference to Markov models:** MM looks back limited amount of time, RNNs potentially unlimited time
 - MidiNet
 - generate **pianoroll** using **CNN**
 - MusicVAE
 - **hierarchical**
 - TransformerVAE
 - leads to **similar reconstruction acc.**
- **evaluation procedures**
 - quality?
 - listening study
 - objective measures
 - originality?
 - how many notes are equal (regardless of transp.)
 - deficit: only compared to other DL appr.

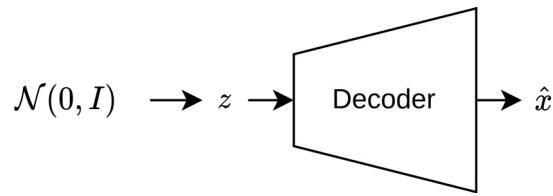
MusicVAE



- **data and representation**
 - there are symbols for each pitch plus a symbol for “no pitch”

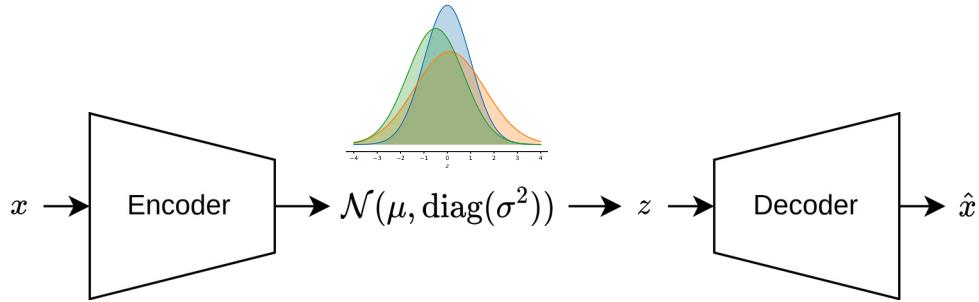


**Train a model to
generate music
from a random
vector.**



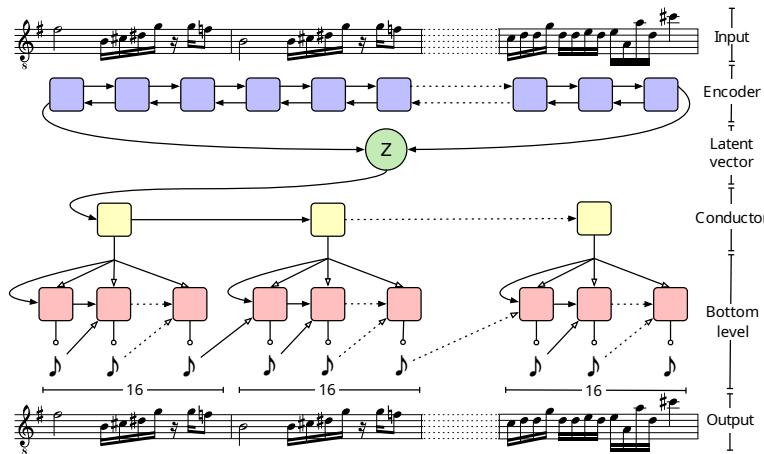
(1) Picture retrieved July 8, 2023 from
<https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-rolled.png>

- **general structure** of MusicVAE
 - music \rightarrow encoder \rightarrow z with special requirements \rightarrow decoder \rightarrow music
- **music is encoded as sequence of vectors.**
 - **each vector represents one 16th note**
- first: RNNs, then VAEs



$$L(x) = \text{rec. loss} + D_{KL}(\underline{\mathcal{N}(\mu, \text{diag}(\sigma^2))} \parallel \underline{\mathcal{N}(0, I)})$$

- $x \rightarrow \mu, \sigma \rightarrow \text{dist} \rightarrow z \rightarrow \hat{x}$
- **reconstruction loss**
 - cross entropy
- **KL divergence**



Hierarchical

- **Encoder:**
 - two stacked BLSTMs
- **Decoder:**
 - hierarchical
 - conductor LSTM
 - one vector per bar
 - bottom-level LSTM
 - bar from conductor vector

Flat

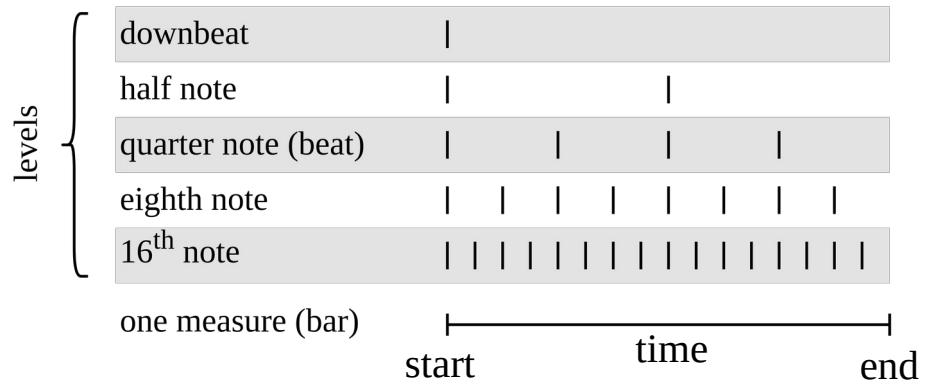
- **Encoder:**
 - simple BLSTM
- **Decoder:**
 - multi-layer LSTM

$$L(x) = \text{rec. loss} + \underline{\beta} \max[D_{KL}, \underline{\lambda}]$$

- **β and λ chosen after grid search**
 - $\beta = 1; \lambda = 33.3$
- optimizer
 - Adam
 - learning rate (LR) = 10^{-3}
- batch size = 64
- weight decay
 - L_2 regularization with weight 10^{-6}
- LR scheduling
 - customized variant of ReduceLROnPlateau
- early stopping was used

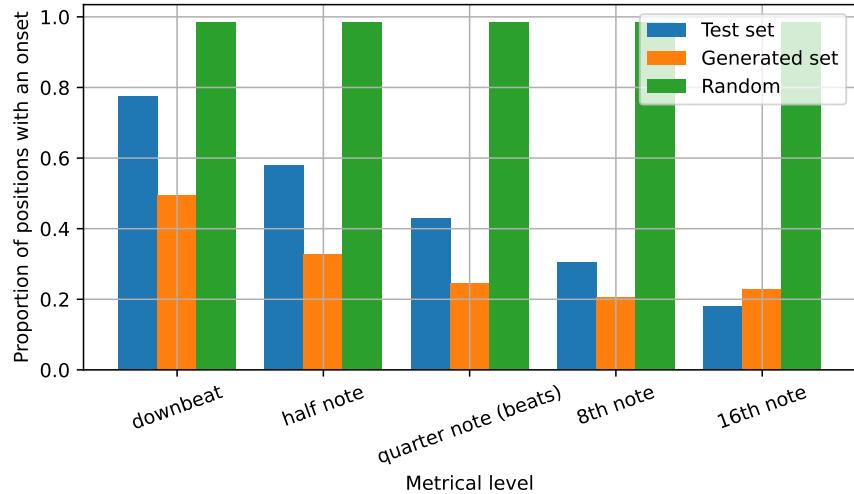
- **loss function**
 - β, λ constant
- **training techniques**
 - Adam, 1e-3
 - batch size 64
 - L2 wd: 1e-6
 - customized ReduceLROnPlateau
 - early stopping

Results: Rhythmic Features



Note onsets can be assigned to a **metrical level**.

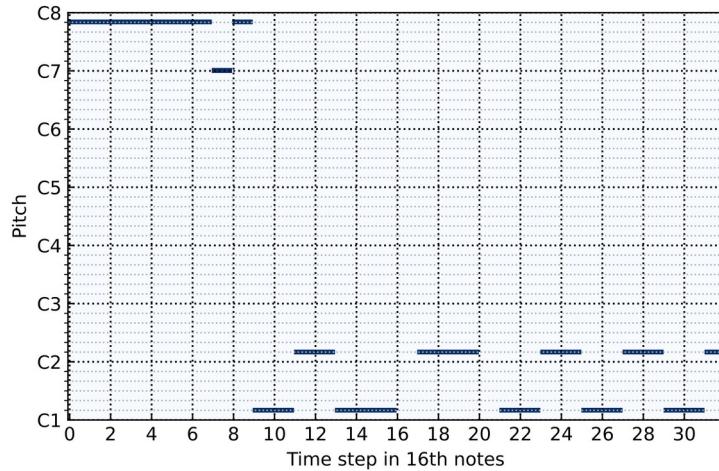
Results: Rhythmic Features



In the generated set there are **more onsets on uneven 16th notes** than on even ones.

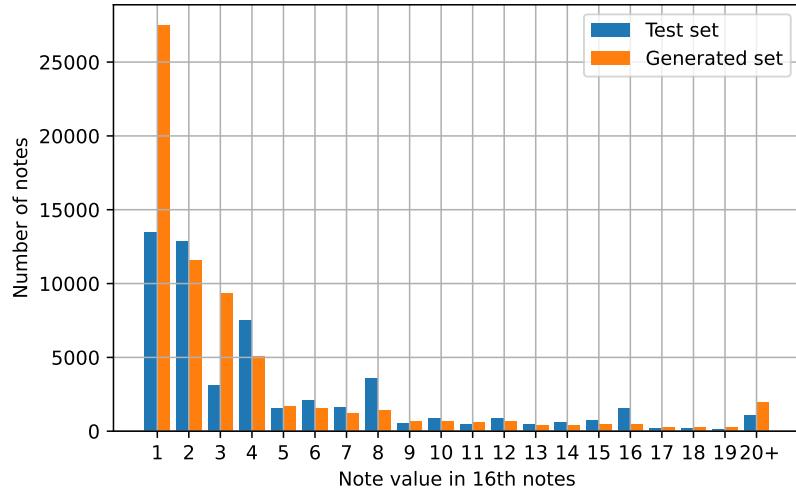
- **onset proportion**
 - ...
- **note length, avg note length**
 - ...

Results: Rhythmic Features



Sequence Nr. 30 (Figure 6.4)

Results: Rhythmic Features

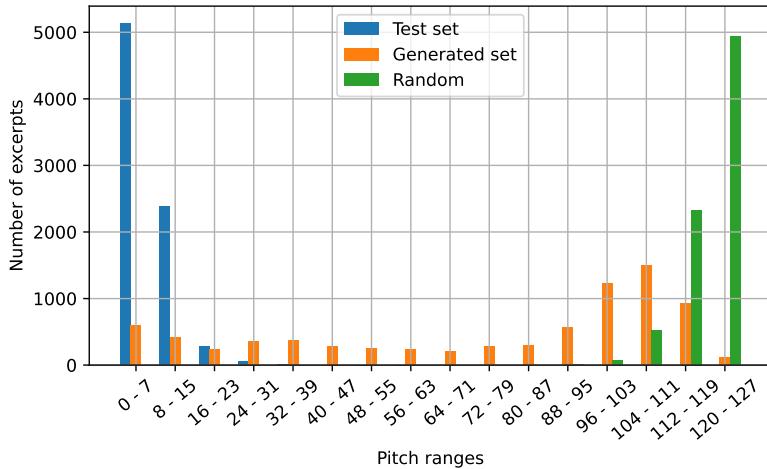


Peaks in the note length were not copied.

- **onset proportion**
 - ...
- **note length, avg note length**
 - ...

Results: Melodic Features

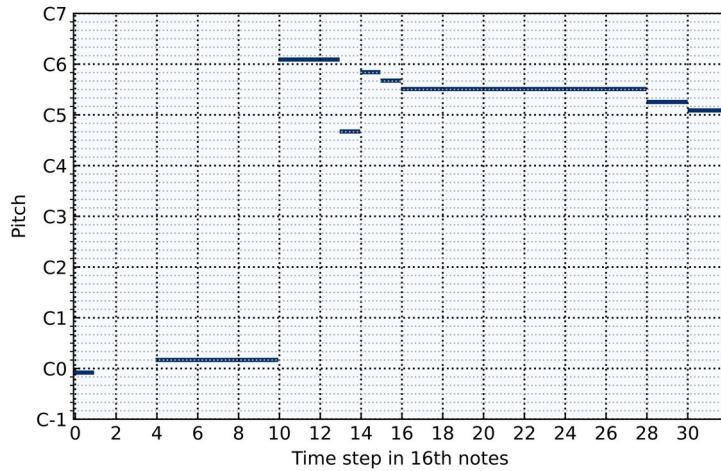
Results: Melodic Features



There are **high pitch jumps** in the generated excerpts.

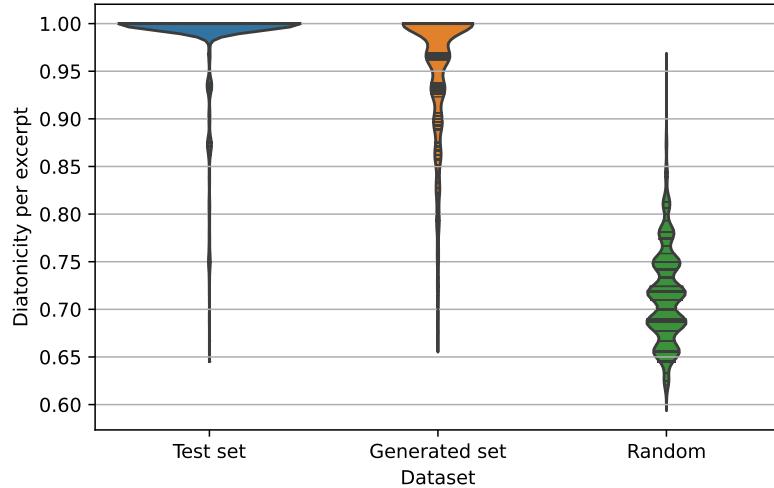
- pitch range
 - ...

Results: Melodic Features



Sequence Nr. 24 (Figure 6.7)

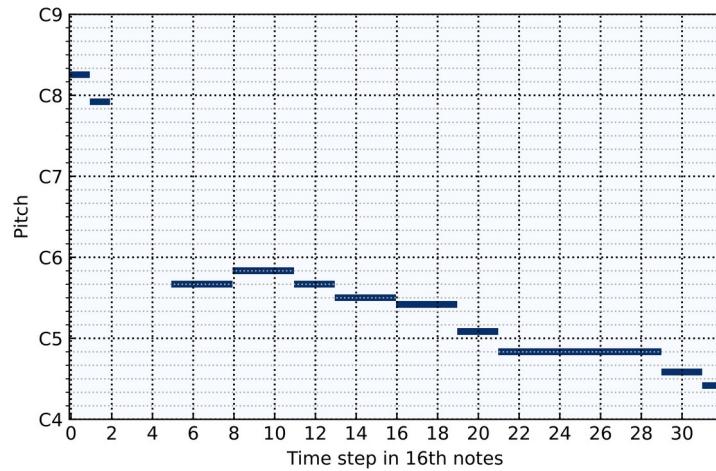
Results: Melodic Features



Generated excerpts are **mostly diatonic**, but there are odd notes.

- diatonicity
 - how much it stays in one key

Results: Melodic Features

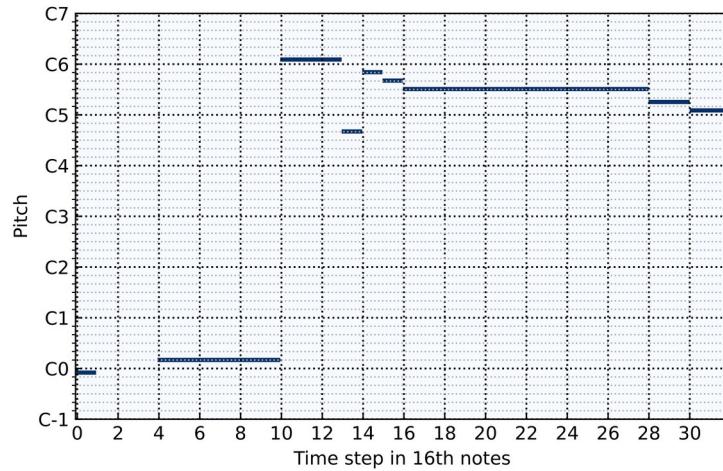


Sequence Nr. 13 (Figure 6.11)

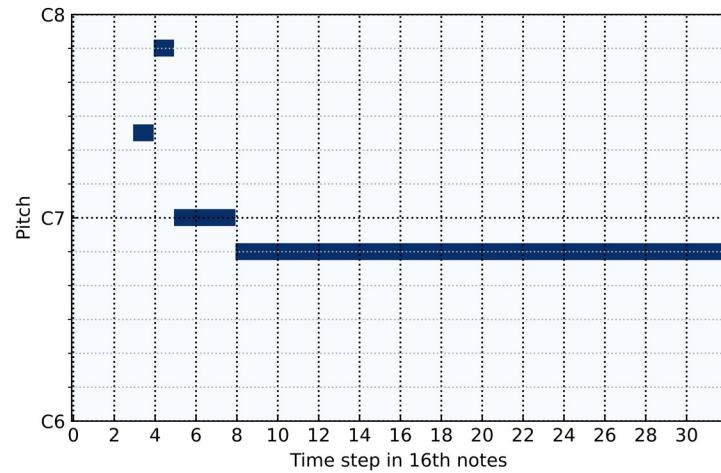
Results: Qualitative Evaluation

23 / 30

- high pitch jumps
- rhythmic differences where not noticed
- ignoring few odd notes, still pleasant and coherent

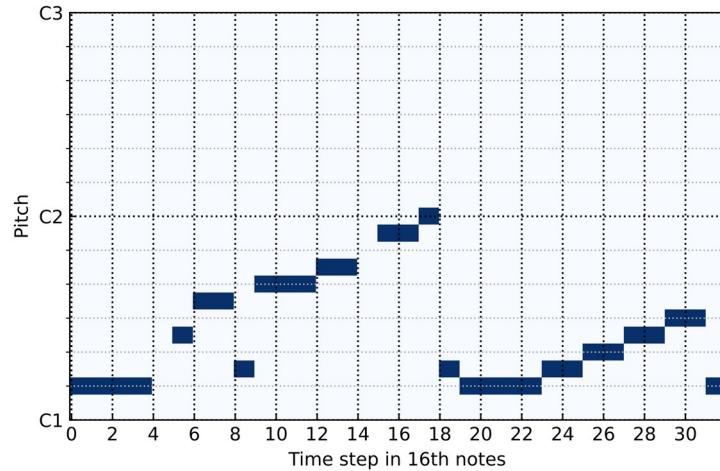


Sequence Nr. 24 (Figure 6.7)



Sequence Nr. 50 (Figure 6.12)

- chimes



Sequence Nr. 34 (Figure 6.15)

- rhythmically interesting

Conclusion

- state of the art has been reviewed
- re-implementation
 - MusicVAE's flat variant implemented
 - excerpts generated
- generated excerpts were evaluated

- What has been done
 - MusicVAE re-implemented, excerpts generated & evaluated
 - generated excerpts similar to training data, but still differences
 - apart from these, generated melodies sounded pleasant
- Future work
 - larger dataset, analysis of it
 - regularization techniques to reduce overfitting
 - sudden jumps in the loss → investigate reason and improve training
 - improve hierarchical model
 - condition the latent space →
 - evaluate latent space in a different way

- more **onsets on uneven 16th notes**
- single **non-diatonic notes & pitch jumps**
- mostly musically coherent & **pleasant-sounding**

- What has been done
 - MusicVAE re-implemented, excerpts generated & evaluated
 - generated excerpts similar to training data, but still differences
 - apart from these, generated melodies sounded pleasant
- Future work
 - larger dataset, analysis of it
 - regularization techniques to reduce overfitting
 - sudden jumps in the loss → investigate reason and improve training
 - improve hierarchical model
 - condition the latent space →
 - evaluate latent space in a different way

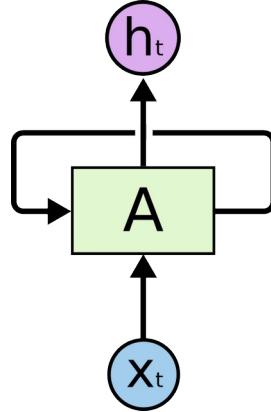
- recreate training **dataset**
- adjust training **procedure**
- **extend** model
 - hierarchical, polyphonic, conditioned

- recreate training dataset
 - larger dataset
 - analyse training dataset more thoroughly before training
 - consider alternative representations
- adjust training procedure
 - tune weight decay
 - scheduled sampling & annealing of β
 - more thorough hyperparameter search
 - find out **reason for jumps in the loss curve** & adjust training accordingly
- extend model
 - implement hierarchical model

Thank you!

Recurrent Neural Networks

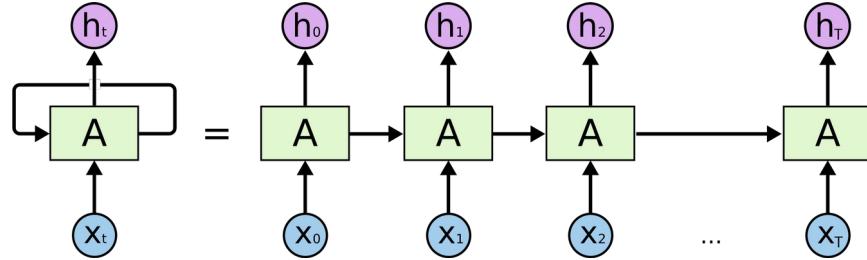
RNNs are neural networks with feedback.



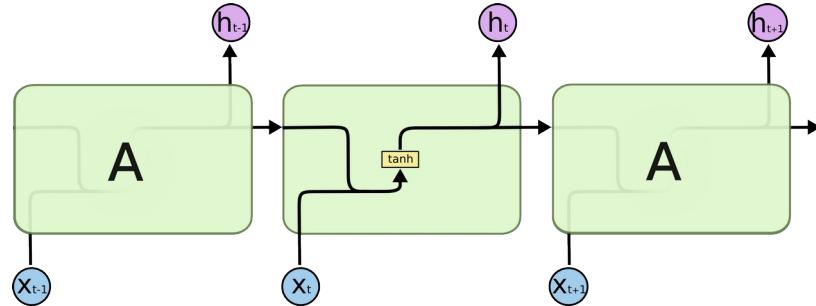
Picture retrieved July 8, 2023 from
<https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-rolled.png>

- RNNs can be used to process time-series data

RNNs can be represented unrolled.



Picture retrieved and changed July 8, 2023 from
<https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png>



$$h_t = \tanh(W_i x_t + b_i + W_h h_{t-1} + b_h)$$

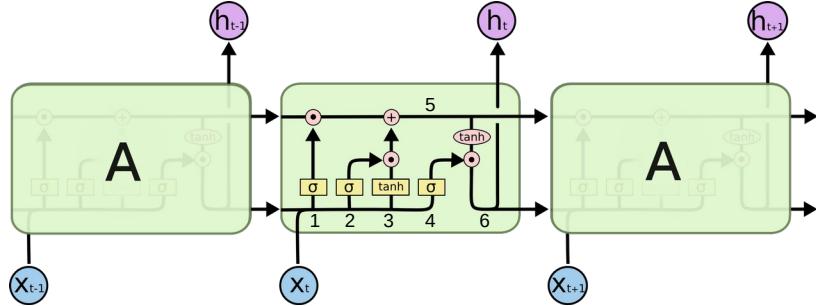
Standart RNNs have some drawbacks.

Picture retrieved July 8, 2023 from
<https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-SimpleRNN.png>

- **problems:**

- ...

MusicVAE: RNNs



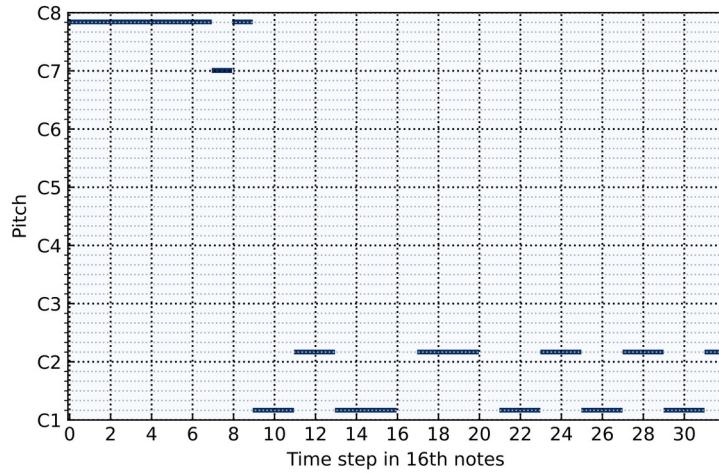
- 1 : $i_t = \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{t-1} + b_{hi})$ $\sigma(x) = \text{sigmoid}(x)$
- 2 : $f_t = \sigma(W_{if}x_t + b_{if} + W_{hf}h_{t-1} + b_{hf})$
- 3 : $g_t = \tanh(W_{ig}x_t + b_{ig} + W_{hg}h_{t-1} + b_{hg})$
- 4 : $o_t = \sigma(W_{io}x_t + b_{io} + W_{ho}h_{t-1} + b_{ho})$
- 5 : $c_t = f_t \odot c_{t-1} + i_t \odot g_t$
- 6 : $h_t = o_t \odot \tanh(c_t)$

Picture retrieved and changed July 8, 2023 from
<https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-chain.png>

- LSTMs
 - forget gate
 - input gate
 - output gate

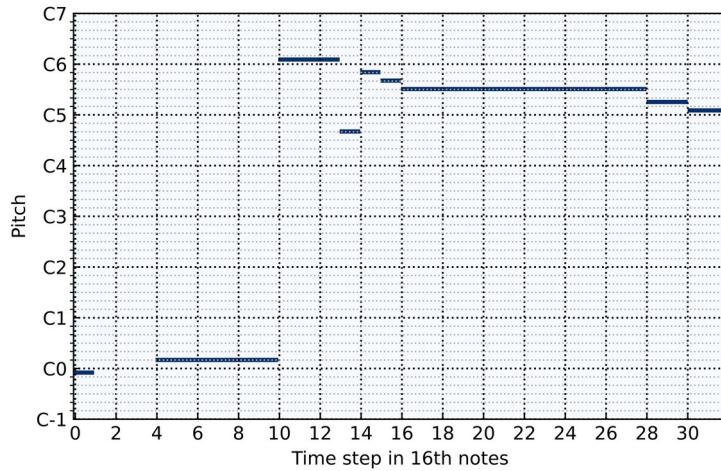
Generated Excerpts

Generated Excerpts



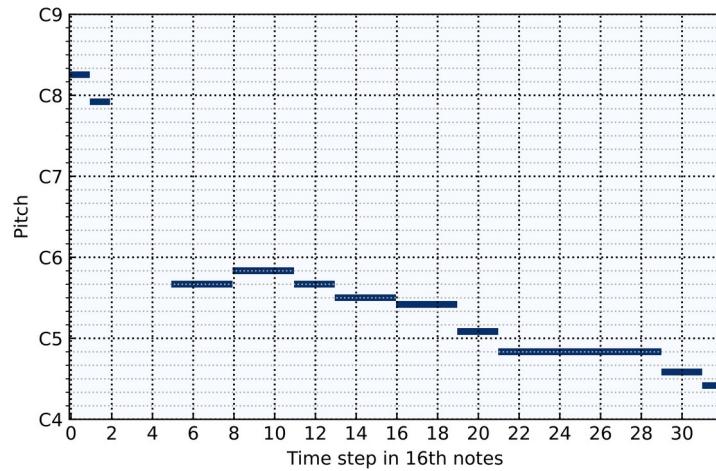
Sequence Nr. 30 (Figure 6.4)

Generated Excerpts



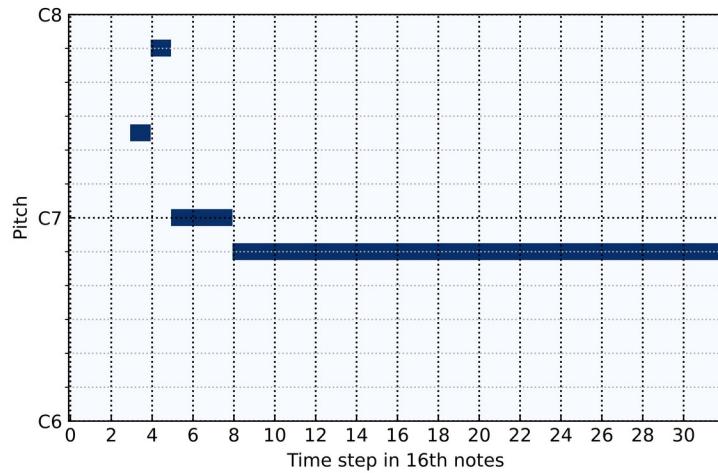
Sequence Nr. 24 (Figure 6.7)

Results: Melodic Features



Sequence Nr. 13 (Figure 6.11)

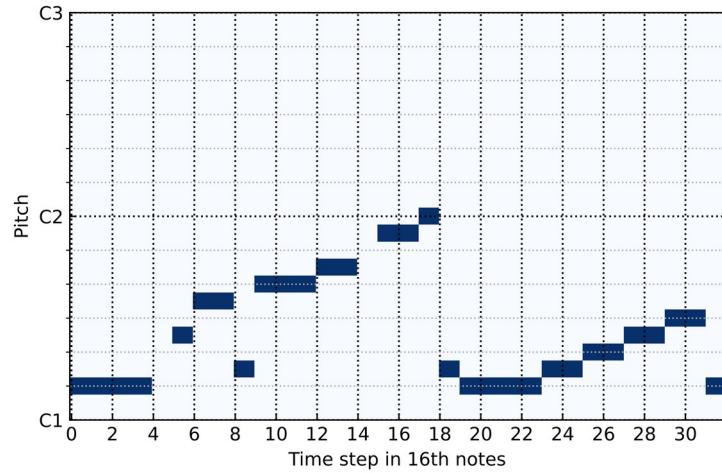
Generated Excerpts



Sequence Nr. 50 (Figure 6.12)

- chimes

Generated Excerpts

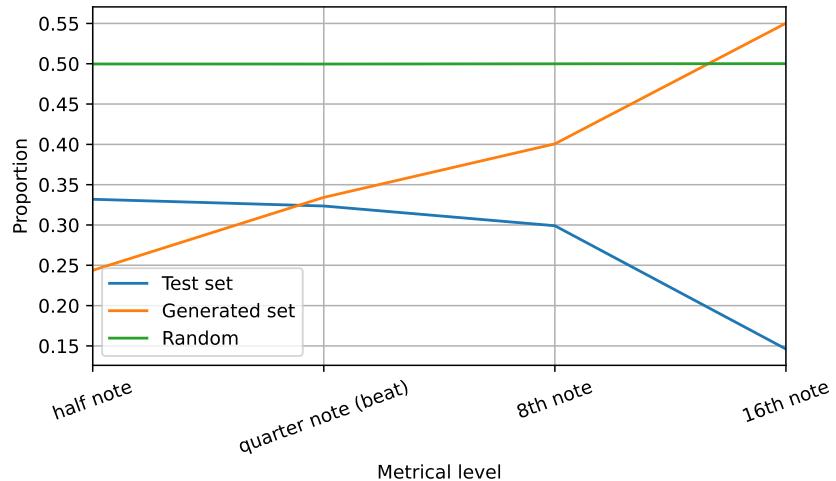


Sequence Nr. 34 (Figure 6.15)

- rhythmically interesting

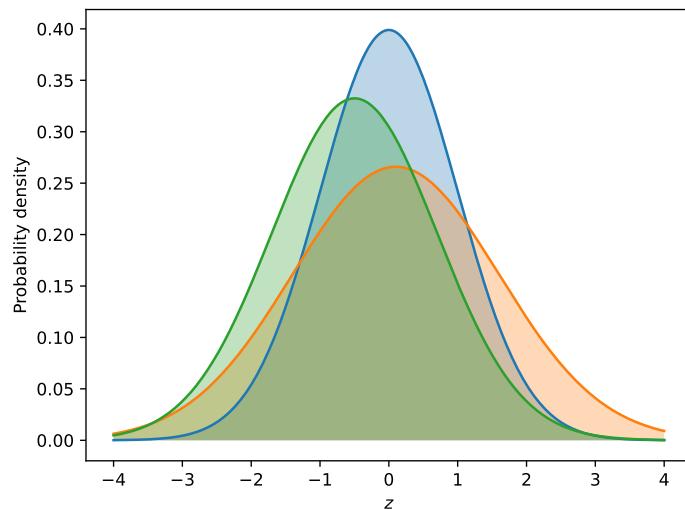
Evaluation

Results: Rhythmic Features

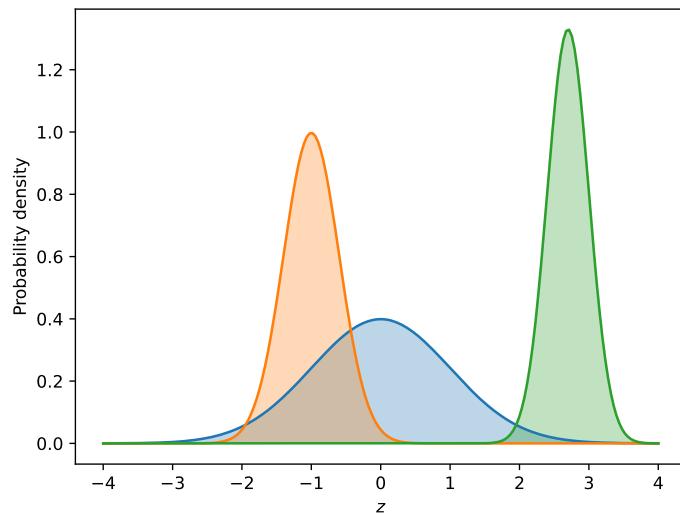


In the generated set there are **more onsets on uneven 16th notes** than on even ones.

Latent Space

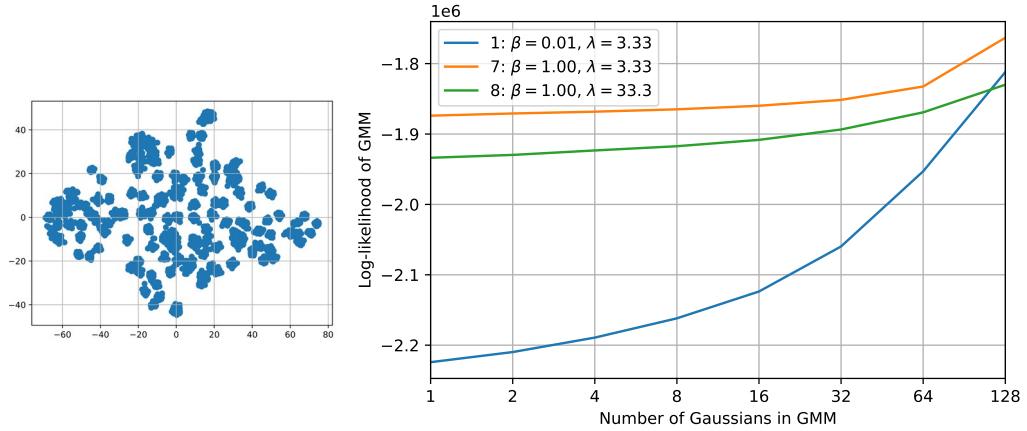


- **Figure: desirable**



- **Figure: undesirable**

Results: Training



The structure of the latent spaces of Models 1, 7, and 8 was examined.

- **grid search**
 - ...
- **structure of latent space**